A small 2 kg ball can move freely with no friction along the circular path DE of radius 120 cm and on linear path along the rotating arm OC. If at a given instant \[\theta = 0.3rad\], \[\dot \theta = 6\dfrac{{rad}}{s}\] and \[\ddot \theta = 66rad/{s^2}\], determine (a) the radial and transverse components of the resultant force, (b) the forces exerted on the ball by the arm OC and the wall of the circular slot DE.
Answer
Verified
121.8k+ views
Hint: radial component of the force can be gotten from the centripetal acceleration of the ball. The transverse component of the force can be derived from the tangential acceleration of the ball.
Formula used: In this solution we will be using the following formulae;
\[{a_c} = {\dot \theta ^2}R\] where \[{a_c}\] is the centripetal acceleration of a body circulating about a point, \[\dot \theta \] is the angular velocity of the body, and \[R\] is the radius of the circular path.
\[{a_t} = \ddot \theta R\] where \[{a_t}\] is the tangential or transverse acceleration of a circulating body, and \[\ddot \theta \] is the angular acceleration of the body.
\[F = ma\] where \[F\] is force exerted on a body, \[m\] is mass, and \[a\] acceleration of a body
Complete Step-by-Step solution:
To find the centripetal force, we shall first calculate the centripetal acceleration of the ball, at the given instant.
The centripetal acceleration can be given by
\[{a_c} = {\dot \theta ^2}R\] where \[\dot \theta \] is the angular velocity and \[R\] is the radius of the circle
Hence, by inserting known values, we have
\[{a_c} = {6^2}\left( {1.2} \right)\] (since 120 cm is \[1.2m\])
\[ \Rightarrow {a_c} = 43.2m/{s^2}\]
Hence, from newton’s second law, the centripetal force can be given as
\[F = m{a_c}\]where\[m\] is the mass of the body, hence for our ball, we have
\[F = \left( {2 \times 43.2} \right) = 86.4N\]
For the transverse force, we calculate the tangential acceleration which can be given by
\[{a_t} = \ddot \theta R\]where\[\ddot \theta \] is the angular acceleration of the body.
Inserting values from question, we have
\[{a_t} = \left( {66} \right)1.2 = 79.2m/{s^2}\]
Then the transverse force on the ball will be
\[F = m{a_t} = 2 \times 79.2\]
\[ \Rightarrow F = 158.4N\]
For part b)
The force exerted by the arm OC is transverse, and the force by DE is radial.
Note: for clarity, the force exerted by the arm OC is transverse because this is the part which hits the ball in linear motion, while the arm DE prevents it from going in linear motion but keeping around a circular path in the shape of itself.
Formula used: In this solution we will be using the following formulae;
\[{a_c} = {\dot \theta ^2}R\] where \[{a_c}\] is the centripetal acceleration of a body circulating about a point, \[\dot \theta \] is the angular velocity of the body, and \[R\] is the radius of the circular path.
\[{a_t} = \ddot \theta R\] where \[{a_t}\] is the tangential or transverse acceleration of a circulating body, and \[\ddot \theta \] is the angular acceleration of the body.
\[F = ma\] where \[F\] is force exerted on a body, \[m\] is mass, and \[a\] acceleration of a body
Complete Step-by-Step solution:
To find the centripetal force, we shall first calculate the centripetal acceleration of the ball, at the given instant.
The centripetal acceleration can be given by
\[{a_c} = {\dot \theta ^2}R\] where \[\dot \theta \] is the angular velocity and \[R\] is the radius of the circle
Hence, by inserting known values, we have
\[{a_c} = {6^2}\left( {1.2} \right)\] (since 120 cm is \[1.2m\])
\[ \Rightarrow {a_c} = 43.2m/{s^2}\]
Hence, from newton’s second law, the centripetal force can be given as
\[F = m{a_c}\]where\[m\] is the mass of the body, hence for our ball, we have
\[F = \left( {2 \times 43.2} \right) = 86.4N\]
For the transverse force, we calculate the tangential acceleration which can be given by
\[{a_t} = \ddot \theta R\]where\[\ddot \theta \] is the angular acceleration of the body.
Inserting values from question, we have
\[{a_t} = \left( {66} \right)1.2 = 79.2m/{s^2}\]
Then the transverse force on the ball will be
\[F = m{a_t} = 2 \times 79.2\]
\[ \Rightarrow F = 158.4N\]
For part b)
The force exerted by the arm OC is transverse, and the force by DE is radial.
Note: for clarity, the force exerted by the arm OC is transverse because this is the part which hits the ball in linear motion, while the arm DE prevents it from going in linear motion but keeping around a circular path in the shape of itself.
Recently Updated Pages
What is Hybridisation? Types, Examples, and Importance
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Main Chemistry Exam Pattern 2025
Collision - Important Concepts and Tips for JEE
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Course 2025: Get All the Relevant Details
JEE Main 2022 June 25 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
JEE Main Maths Paper Pattern 2025
Electromagnetic Waves Chapter - Physics JEE Main