
A source producing the sound of frequency 170 Hz is approaching a stationary observer with a velocity of 17 m/s. The apparent change in the wavelength of sound heard by the observer is (speed of sound in air = 340 m/s)
A. 0.1m
B. 0.2m
C. 0.4m
D. 0.5m
Answer
131.7k+ views
Hint:To find the apparent change in wavelength, we find the apparent change in the frequency due to Doppler effect and then using the relation between the wave speed, frequency and the wavelength, we get the apparent change in wavelength of the sound.
Formula used:
\[{f_{ap}} = {f_o}\left( {\dfrac{{v \pm {v_o}}}{{v \pm {v_s}}}} \right)\]
where \[{f_{ap}}\] is the apparent frequency heard by the listener moving with speed \[{v_o}\] with respect to the source which is moving with speed \[{v_s}\], \[{f_o}\] is the original frequency and v is the speed of sound in air.
\[v = f\lambda \]
where v is the speed of the wave, f is the frequency of the wave and \[\lambda \] is the wavelength of the wave.
Complete step by step solution:
It is given that the source of the sound is approaching towards the stationary observer.
The Doppler Effect formula for the sound source moving towards the stationary observer is,
\[{f_{ap}} = {f_o}\left( {\dfrac{v}{{v - {v_s}}}} \right)\]
The speed of sound, v is given as 340 m/s and the original frequency is given as 170 Hz.
So, the apparent frequency is,
\[{f_{ap}} = \left( {170\,Hz} \right)\left( {\dfrac{{340}}{{340 - 17}}} \right) \\ \]
\[\Rightarrow {f_{ap}} = 170 \times \dfrac{{340}}{{323}}Hz \\ \]
\[\Rightarrow {f_{ap}} = 179\,Hz\]
Using the relation between the speed of the wave, frequency and the wavelength we get the initial and final wavelength. By finding differences, we get the change in wavelength.
\[\Delta \lambda = {\lambda _i} - {\lambda _f} \\ \]
\[\Rightarrow \Delta \lambda = \dfrac{v}{{{f_o}}} - \dfrac{v}{{{f_{ap}}}} \\ \]
\[\Rightarrow \Delta \lambda = \left( {\dfrac{{340}}{{170}} - \dfrac{{340}}{{179}}} \right)m \\ \]
\[\therefore \Delta \lambda = 0.10\,m\]
Hence, the apparent change in the wavelength of the sound wave is 0.10 m.
Therefore, the correct option is A.
Note: The Doppler’s effect is for the change in the frequency due to relative motion between the source of the sound and the observer. So, we can’t directly use the Doppler’s effect for the change in wavelength for the mechanical wave-like sound.
Formula used:
\[{f_{ap}} = {f_o}\left( {\dfrac{{v \pm {v_o}}}{{v \pm {v_s}}}} \right)\]
where \[{f_{ap}}\] is the apparent frequency heard by the listener moving with speed \[{v_o}\] with respect to the source which is moving with speed \[{v_s}\], \[{f_o}\] is the original frequency and v is the speed of sound in air.
\[v = f\lambda \]
where v is the speed of the wave, f is the frequency of the wave and \[\lambda \] is the wavelength of the wave.
Complete step by step solution:
It is given that the source of the sound is approaching towards the stationary observer.
The Doppler Effect formula for the sound source moving towards the stationary observer is,
\[{f_{ap}} = {f_o}\left( {\dfrac{v}{{v - {v_s}}}} \right)\]
The speed of sound, v is given as 340 m/s and the original frequency is given as 170 Hz.
So, the apparent frequency is,
\[{f_{ap}} = \left( {170\,Hz} \right)\left( {\dfrac{{340}}{{340 - 17}}} \right) \\ \]
\[\Rightarrow {f_{ap}} = 170 \times \dfrac{{340}}{{323}}Hz \\ \]
\[\Rightarrow {f_{ap}} = 179\,Hz\]
Using the relation between the speed of the wave, frequency and the wavelength we get the initial and final wavelength. By finding differences, we get the change in wavelength.
\[\Delta \lambda = {\lambda _i} - {\lambda _f} \\ \]
\[\Rightarrow \Delta \lambda = \dfrac{v}{{{f_o}}} - \dfrac{v}{{{f_{ap}}}} \\ \]
\[\Rightarrow \Delta \lambda = \left( {\dfrac{{340}}{{170}} - \dfrac{{340}}{{179}}} \right)m \\ \]
\[\therefore \Delta \lambda = 0.10\,m\]
Hence, the apparent change in the wavelength of the sound wave is 0.10 m.
Therefore, the correct option is A.
Note: The Doppler’s effect is for the change in the frequency due to relative motion between the source of the sound and the observer. So, we can’t directly use the Doppler’s effect for the change in wavelength for the mechanical wave-like sound.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

In Bohrs model of the hydrogen atom the radius of the class 12 physics JEE_Main

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Other Pages
JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download
