Answer
Verified
112.8k+ views
Hint Given that all the objects are of the same materials and having the same mass also and are heated at the same temperature. This problem can be solved by first understanding the dimensions of the objects. We will find the rate of cooling by using Newton’s law of cooling which provides information about which body will cool faster.
Formula used
Newton’s law of cooling
$ \Rightarrow \dfrac{{dQ}}{{dt}} = mC\dfrac{{\Delta T}}{{dt}}$
where $\dfrac{{dQ}}{{dt}}$ is the rate of radiation
$m$= mass
$C$= specific heat
$\dfrac{{\Delta T}}{{dt}}$ = rate of temperature change.
Complete Step by step solution
We will start by understanding the properties of dimensions of the objects. Here, given that cube, sphere, and circular disc or plate have the same mass and are made of the same materials and also their initial temperature is also the same.
But if we discuss the surface then we can see that the surface area of the disc is more than the cube and the surface area of the cube is more than the sphere.
Now from Newton’s law of cooling, we can deduce that
$\dfrac{{dQ}}{{dt}} = mC\dfrac{{\Delta T}}{{dt}}$ ---------------- Equation $(1)$
where $\dfrac{{dQ}}{{dt}}$ is the rate of radiation
$m$= mass
$C$= specific heat
$\dfrac{{\Delta T}}{{dt}}$ = rate of change in temperature
Also rearranging the above Equation $(1)$ we can rewrite it as
$\dfrac{{\Delta T}}{{dt}} = \dfrac{{dQ}}{{dt}}\dfrac{1}{{mC}}$
Now from Stefan-Boltzmann law, we know that the heat energy radiation can be given as
$Q = e\sigma A({T^4} - T_0^4)$ ------------- Equation $(2)$
where $e$= emissivity
$T$= Temperature of an object
${T_0}$= Temperature of surroundings
$\sigma $= Stefan’s constant
$A$= surface area
Now substituting the Equation $(2)$in Equation $(1)$ we get
$\dfrac{{\Delta T}}{{dt}} = \dfrac{{e\sigma A({T^4} - T_0^4)}}{{mC}}$
As it is given that the mass is the same for all the object hence
${m_{sphere}} = {m_{cube}} = {m_{disc}}$
Also, all other quantities like emissivity$e$, Stefan’s constant$\sigma $, and initial temperature which is $3 \times {10^3}^\circ C$ but the surface area $A$ of all the given objects are different.
Hence the rate of cooling is directly proportional to the surface area of the substance or object.
$\therefore \dfrac{{\Delta T}}{{dt}} \propto A$
We know that
$ \Rightarrow {A_{sphere}} < {A_{cube}} < {A_{disc}}$
Therefore as the surface area of the circular disc is larger than the cube and sphere hence it will need less time to cool which means the heat will dissipate more.
Hence option (D) is the correct answer.
Note Here we have used another law that is Stefan-Boltzmann law which states that total heat that is radiated from any surface of an object is proportional to the fourth power of the absolute temperature of that object. It gives$Q \propto {T^4}$.
Formula used
Newton’s law of cooling
$ \Rightarrow \dfrac{{dQ}}{{dt}} = mC\dfrac{{\Delta T}}{{dt}}$
where $\dfrac{{dQ}}{{dt}}$ is the rate of radiation
$m$= mass
$C$= specific heat
$\dfrac{{\Delta T}}{{dt}}$ = rate of temperature change.
Complete Step by step solution
We will start by understanding the properties of dimensions of the objects. Here, given that cube, sphere, and circular disc or plate have the same mass and are made of the same materials and also their initial temperature is also the same.
But if we discuss the surface then we can see that the surface area of the disc is more than the cube and the surface area of the cube is more than the sphere.
Now from Newton’s law of cooling, we can deduce that
$\dfrac{{dQ}}{{dt}} = mC\dfrac{{\Delta T}}{{dt}}$ ---------------- Equation $(1)$
where $\dfrac{{dQ}}{{dt}}$ is the rate of radiation
$m$= mass
$C$= specific heat
$\dfrac{{\Delta T}}{{dt}}$ = rate of change in temperature
Also rearranging the above Equation $(1)$ we can rewrite it as
$\dfrac{{\Delta T}}{{dt}} = \dfrac{{dQ}}{{dt}}\dfrac{1}{{mC}}$
Now from Stefan-Boltzmann law, we know that the heat energy radiation can be given as
$Q = e\sigma A({T^4} - T_0^4)$ ------------- Equation $(2)$
where $e$= emissivity
$T$= Temperature of an object
${T_0}$= Temperature of surroundings
$\sigma $= Stefan’s constant
$A$= surface area
Now substituting the Equation $(2)$in Equation $(1)$ we get
$\dfrac{{\Delta T}}{{dt}} = \dfrac{{e\sigma A({T^4} - T_0^4)}}{{mC}}$
As it is given that the mass is the same for all the object hence
${m_{sphere}} = {m_{cube}} = {m_{disc}}$
Also, all other quantities like emissivity$e$, Stefan’s constant$\sigma $, and initial temperature which is $3 \times {10^3}^\circ C$ but the surface area $A$ of all the given objects are different.
Hence the rate of cooling is directly proportional to the surface area of the substance or object.
$\therefore \dfrac{{\Delta T}}{{dt}} \propto A$
We know that
$ \Rightarrow {A_{sphere}} < {A_{cube}} < {A_{disc}}$
Therefore as the surface area of the circular disc is larger than the cube and sphere hence it will need less time to cool which means the heat will dissipate more.
Hence option (D) is the correct answer.
Note Here we have used another law that is Stefan-Boltzmann law which states that total heat that is radiated from any surface of an object is proportional to the fourth power of the absolute temperature of that object. It gives$Q \propto {T^4}$.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line