
A sphere of mass m moving with a constant velocity u hits another stationary sphere of the same mass and coefficient of restitution (e). The ratio of the velocities of the two spheres after collision will be:

A) \[\dfrac{{1 - e}}{{1 + e}}\]
B) \[\dfrac{e}{{e + 1}}\]
C) \[\dfrac{2}{e}\]
D) \[\dfrac{{e + 1}}{{2e}}\]
Answer
233.1k+ views
Hint: Coefficient of restitution is used whenever there is a collision between two particles or bodies. Coefficient of restitution determines the type of collision whether it is elastic or not. This is done so as to know if there is any loss of kinetic energy after collision or not. It is the ratio of final to initial relative velocity between two bodies after collision.
Given that two particles are made to collide with each other so they must be possessing some momentum. Since momentum is related to speed, mass, direction and force required to keep objects moving or to stop them. Law of conservation of momentum states that momentum of a system remains unchanged. It can be transformed from one form to another but it can not be destroyed or created.
Complete step by step solution:
Since mass of both the spheres is same \[{m_1} = {m_2} = m\]
Let \[{u_1} = u\]and \[{u_2} = 0\]be their velocities before collision
Let \[{v_1},{v_2}\]be their momentum after collision.
According to Principle of Conservation of momentum
\[{m_1}{u_1} + {m_2}{u_2} = {m_1}{v_1} + {m_2}{v_2}\]
Substituting all the values and solving,
\[\Rightarrow mu + m(0) = m{v_1} + m{v_2}\]
\[\Rightarrow mu = m({v_1} + {v_2})\]
\[\Rightarrow u = {v_1} + {v_2}\]……(i)
By definition of coefficient of restitution
\[\Rightarrow e = \dfrac{{{v_2} - {v_1}}}{{u - 0}}\]
\[\Rightarrow {v_2} - {v_1} = eu\]……(ii)
From equation (i) and (ii)\[\]
\[\Rightarrow {v_1} + {v_2} = u\]
\[\Rightarrow {v_1} - {v_2} = eu\]
Solving above equations and evaluating values,
\[\Rightarrow {v_1} = \dfrac{{(1 - e)u}}{2}\]……(iii)
\[\Rightarrow {v_2} = \dfrac{{(1 + e)u}}{2}\]……(iv)
Dividing (iii) and (iv),
\[\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{1 - e}}{{1 + e}}\]
Option A is the correct answer.
Note: Momentum is used in everyday life, so it has its own significance. One of the examples is the air bags these days in cars are made taking care of protection from injury to the passengers. Because airbags increase the time required to stop momentum of driver and passenger and minimizes the effect of force on an object or person due to collision.
Given that two particles are made to collide with each other so they must be possessing some momentum. Since momentum is related to speed, mass, direction and force required to keep objects moving or to stop them. Law of conservation of momentum states that momentum of a system remains unchanged. It can be transformed from one form to another but it can not be destroyed or created.
Complete step by step solution:
Since mass of both the spheres is same \[{m_1} = {m_2} = m\]
Let \[{u_1} = u\]and \[{u_2} = 0\]be their velocities before collision
Let \[{v_1},{v_2}\]be their momentum after collision.
According to Principle of Conservation of momentum
\[{m_1}{u_1} + {m_2}{u_2} = {m_1}{v_1} + {m_2}{v_2}\]
Substituting all the values and solving,
\[\Rightarrow mu + m(0) = m{v_1} + m{v_2}\]
\[\Rightarrow mu = m({v_1} + {v_2})\]
\[\Rightarrow u = {v_1} + {v_2}\]……(i)
By definition of coefficient of restitution
\[\Rightarrow e = \dfrac{{{v_2} - {v_1}}}{{u - 0}}\]
\[\Rightarrow {v_2} - {v_1} = eu\]……(ii)
From equation (i) and (ii)\[\]
\[\Rightarrow {v_1} + {v_2} = u\]
\[\Rightarrow {v_1} - {v_2} = eu\]
Solving above equations and evaluating values,
\[\Rightarrow {v_1} = \dfrac{{(1 - e)u}}{2}\]……(iii)
\[\Rightarrow {v_2} = \dfrac{{(1 + e)u}}{2}\]……(iv)
Dividing (iii) and (iv),
\[\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{1 - e}}{{1 + e}}\]
Option A is the correct answer.
Note: Momentum is used in everyday life, so it has its own significance. One of the examples is the air bags these days in cars are made taking care of protection from injury to the passengers. Because airbags increase the time required to stop momentum of driver and passenger and minimizes the effect of force on an object or person due to collision.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

