A spherical liquid drop of radius R is divided into eight equal droplets. If the surface tension is T, then the work done in this process will be
A) \[2\pi {R^2}T\]
B) \[3\pi {R^2}T\]
C) \[4\pi {R^2}T\]
D) \[2\pi R{T^2}\]
Answer
Verified
122.7k+ views
Hint: As we know if anything is divided into any number of parts it can be any solid container in which we can store anything then total volume will remain the same but its size like in this case radius will decrease. And then calculating work done from \[W = - T\left( {{A_f} - {A_i}} \right)\].
Complete step by step answer:
As in the question we are given with radius and surface tension as \[R\]and \[T\]respectively and we know the formula of volume of spherical drop is
\[V = \dfrac{{4\pi {R^3}}}{3}\], and as given in question that spherical drop has divided into eight equal drops so we will equate the volume of both initial and final state of drops as
\[{V_i} = 8{V_f}\], where \[{V_i}\] is initial and\[{V_f}\] is the final state of droplets. As it has divided into eight droplets we have written it above and as from the above formula we can see that \[V = \dfrac{{4\pi {R^3}}}{3}\]so\[V \propto {R^3}\].
So for initial state we can write, \[{V_i} \propto {R^3}\]
And for the final state we can write, \[{V_f} \propto {R_1}^3\],where \[{R_1}\] is the final radius of small droplets.
And substituting these values in \[{V_i} = 8{V_f}\],we get
\[{R^3} = 8{R_1}^3\]
\[R = {\left( {8{R_1}^3} \right)^{1/3}}\]
\[R = 2{R_1}\], so the final radius will be half of initial and now to calculate work done we know the formula of work done as
\[W = - T\left( {{A_f} - {A_i}} \right)\]
\[W = - T\left( {4\pi {R_1}^2 - 4\pi {R^2}} \right)\]
\[W = - 4\pi T\left( {\dfrac{{{R^2}}}{4} - {R^2}} \right)\]
\[W = - 4\pi T\left( { - 3\dfrac{{{R^2}}}{4}} \right)\]
\[W = 3\pi T{R^2}\]
So, The correct option is B option.
Note: From the above question we have seen that its along process in some questions you can also work from options that as in this question we are have D. option where dimension doesn’t match to work done so we can neglect that option and take care of negative sign in work done.
Complete step by step answer:
As in the question we are given with radius and surface tension as \[R\]and \[T\]respectively and we know the formula of volume of spherical drop is
\[V = \dfrac{{4\pi {R^3}}}{3}\], and as given in question that spherical drop has divided into eight equal drops so we will equate the volume of both initial and final state of drops as
\[{V_i} = 8{V_f}\], where \[{V_i}\] is initial and\[{V_f}\] is the final state of droplets. As it has divided into eight droplets we have written it above and as from the above formula we can see that \[V = \dfrac{{4\pi {R^3}}}{3}\]so\[V \propto {R^3}\].
So for initial state we can write, \[{V_i} \propto {R^3}\]
And for the final state we can write, \[{V_f} \propto {R_1}^3\],where \[{R_1}\] is the final radius of small droplets.
And substituting these values in \[{V_i} = 8{V_f}\],we get
\[{R^3} = 8{R_1}^3\]
\[R = {\left( {8{R_1}^3} \right)^{1/3}}\]
\[R = 2{R_1}\], so the final radius will be half of initial and now to calculate work done we know the formula of work done as
\[W = - T\left( {{A_f} - {A_i}} \right)\]
\[W = - T\left( {4\pi {R_1}^2 - 4\pi {R^2}} \right)\]
\[W = - 4\pi T\left( {\dfrac{{{R^2}}}{4} - {R^2}} \right)\]
\[W = - 4\pi T\left( { - 3\dfrac{{{R^2}}}{4}} \right)\]
\[W = 3\pi T{R^2}\]
So, The correct option is B option.
Note: From the above question we have seen that its along process in some questions you can also work from options that as in this question we are have D. option where dimension doesn’t match to work done so we can neglect that option and take care of negative sign in work done.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line