Answer
Verified
115.2k+ views
Hint: Spring constant of a spring is inversely proportional to the length of the spring and will be the same for both halves of the spring.
Formula used:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
Here k is the spring constant.
Complete step by step solution:
A spring of constant k is loaded with mass, we have to find the spring constant when the spring is cut into two equal halves and one of them is loaded with the same mass again.
As spring constant of a spring is inversely proportional to the length of the spring.
Let the length of the spring be l then, the relation between constant k and length l can be mathematically expressed as:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
When the spring is cut into two equal halves then the length of each halves will be \[\dfrac{l}{2}\] and let the spring constant of one half be k’.
From the proportionality relation when length becomes half spring constant will be doubled i.e. k’ = 2k.
Therefore, option C is the correct option.
Note: Spring constant for both halves will be equal i.e. 2k and it does not depend on the mass of the object suspended to the spring. It can be mathematically proved by equation\[F = - kx = - m{\omega ^2}x\], as on substituting \[{\omega ^2} = \dfrac{k}{m}\]in \[k = m{\omega ^2}\]mass m of object will be canceled out.
Formula used:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
Here k is the spring constant.
Complete step by step solution:
A spring of constant k is loaded with mass, we have to find the spring constant when the spring is cut into two equal halves and one of them is loaded with the same mass again.
As spring constant of a spring is inversely proportional to the length of the spring.
Let the length of the spring be l then, the relation between constant k and length l can be mathematically expressed as:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
When the spring is cut into two equal halves then the length of each halves will be \[\dfrac{l}{2}\] and let the spring constant of one half be k’.
From the proportionality relation when length becomes half spring constant will be doubled i.e. k’ = 2k.
Therefore, option C is the correct option.
Note: Spring constant for both halves will be equal i.e. 2k and it does not depend on the mass of the object suspended to the spring. It can be mathematically proved by equation\[F = - kx = - m{\omega ^2}x\], as on substituting \[{\omega ^2} = \dfrac{k}{m}\]in \[k = m{\omega ^2}\]mass m of object will be canceled out.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs