
A spring having a spring constant K is loaded with a mass m. The spring is cut into two equal parts and one of these is loaded again with the same mass. The new spring constant is
A. \[\dfrac{k}{2}\]
B. k
C. 2k
D. \[{k^2}\]
Answer
142.2k+ views
Hint: Spring constant of a spring is inversely proportional to the length of the spring and will be the same for both halves of the spring.
Formula used:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
Here k is the spring constant.
Complete step by step solution:
A spring of constant k is loaded with mass, we have to find the spring constant when the spring is cut into two equal halves and one of them is loaded with the same mass again.
As spring constant of a spring is inversely proportional to the length of the spring.
Let the length of the spring be l then, the relation between constant k and length l can be mathematically expressed as:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
When the spring is cut into two equal halves then the length of each halves will be \[\dfrac{l}{2}\] and let the spring constant of one half be k’.
From the proportionality relation when length becomes half spring constant will be doubled i.e. k’ = 2k.
Therefore, option C is the correct option.
Note: Spring constant for both halves will be equal i.e. 2k and it does not depend on the mass of the object suspended to the spring. It can be mathematically proved by equation\[F = - kx = - m{\omega ^2}x\], as on substituting \[{\omega ^2} = \dfrac{k}{m}\]in \[k = m{\omega ^2}\]mass m of object will be canceled out.
Formula used:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
Here k is the spring constant.
Complete step by step solution:
A spring of constant k is loaded with mass, we have to find the spring constant when the spring is cut into two equal halves and one of them is loaded with the same mass again.
As spring constant of a spring is inversely proportional to the length of the spring.
Let the length of the spring be l then, the relation between constant k and length l can be mathematically expressed as:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
When the spring is cut into two equal halves then the length of each halves will be \[\dfrac{l}{2}\] and let the spring constant of one half be k’.
From the proportionality relation when length becomes half spring constant will be doubled i.e. k’ = 2k.
Therefore, option C is the correct option.
Note: Spring constant for both halves will be equal i.e. 2k and it does not depend on the mass of the object suspended to the spring. It can be mathematically proved by equation\[F = - kx = - m{\omega ^2}x\], as on substituting \[{\omega ^2} = \dfrac{k}{m}\]in \[k = m{\omega ^2}\]mass m of object will be canceled out.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
