Answer
Verified
112.8k+ views
Hint So here in this question we have a steady current and their magnetic dipole moment is also given here. It is saying that if the loop of squares gets changed to a circular loop then it will carry the same current then we have to find the magnitude. So here we will use the concept which is of magnetic dipole and through this, we will get the relation.
Formula:
Magnetic dipole,
$m = nIA$ ;
Where,
$m$ , will be the magnetic dipole.
$n$ , will be equal to the turn in the loop and $I$ will be current and $A$ will be the area of current-conducting conductor
Complete Step by Step Solution Here we will first see the formula and accordingly we will put the given values and will get the result.
So from the formula, know the magnetic dipole is equal to the
$ \Rightarrow m = nIA$
Or we can write it as
$ \Rightarrow m = 1 \times I \times {a^2}$
Now we know from the question,
$ \Rightarrow 4a = 2\pi r$
Now we will solve the above equation for the value of $r$ , we get
$ \Rightarrow r = \dfrac{{2a}}{\pi }$
And as we already have seen the formula for the loop which is being circular, so
$ \Rightarrow m' = 1 \times I \times \pi {r^2}$
On substituting the values in the above equation, we will get
$ \Rightarrow 1 \times I \times \pi \times {\left( {\dfrac{{2a}}{\pi }} \right)^2}$
So from here, after solving the above equation, we will get the value for the magnitude of the magnetic dipole.
$ \Rightarrow m' = \dfrac{{4m}}{\pi }$
Therefore, $\dfrac{{4m}}{\pi }$ is the required magnitude, and hence the correct option is B .
Note A magnetic dipole is akin to an electric dipole, it exists in reality and has physical representation and meaning. The magnetic moment is just a consequence of mathematical building for physical proof. So we can say that when the field is produced because the magnetic field is proportional to the magnetic moment.
Formula:
Magnetic dipole,
$m = nIA$ ;
Where,
$m$ , will be the magnetic dipole.
$n$ , will be equal to the turn in the loop and $I$ will be current and $A$ will be the area of current-conducting conductor
Complete Step by Step Solution Here we will first see the formula and accordingly we will put the given values and will get the result.
So from the formula, know the magnetic dipole is equal to the
$ \Rightarrow m = nIA$
Or we can write it as
$ \Rightarrow m = 1 \times I \times {a^2}$
Now we know from the question,
$ \Rightarrow 4a = 2\pi r$
Now we will solve the above equation for the value of $r$ , we get
$ \Rightarrow r = \dfrac{{2a}}{\pi }$
And as we already have seen the formula for the loop which is being circular, so
$ \Rightarrow m' = 1 \times I \times \pi {r^2}$
On substituting the values in the above equation, we will get
$ \Rightarrow 1 \times I \times \pi \times {\left( {\dfrac{{2a}}{\pi }} \right)^2}$
So from here, after solving the above equation, we will get the value for the magnitude of the magnetic dipole.
$ \Rightarrow m' = \dfrac{{4m}}{\pi }$
Therefore, $\dfrac{{4m}}{\pi }$ is the required magnitude, and hence the correct option is B .
Note A magnetic dipole is akin to an electric dipole, it exists in reality and has physical representation and meaning. The magnetic moment is just a consequence of mathematical building for physical proof. So we can say that when the field is produced because the magnetic field is proportional to the magnetic moment.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
IIT JEE Main Maths 2025: Syllabus, Important Chapters, Weightage
Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses
Difference Between Distance and Displacement: JEE Main 2024
Difference Between CNG and LPG: JEE Main 2024
Difference between soap and detergent
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking