Answer
Verified
400.2k+ views
Hint: Ampere's Circuital Law states that the closed line integral of magnetic field around a current carrying conductor is equal to absolute permeability times the total current threading the conductor.
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0}{I_{enclosed}}$ (B is the magnetic field, length of the conductor and I is the current flowing)
A toroid works as an inductor which boosts the frequency to appropriate levels. Using the above relations we will solve the given problem.
Complete step by step solution:
(A) Let us state the ampere's Circuital Law and its derivation with an application of toroid:
Ampere's circuital law states that the line integral of magnetic field $(\mathop B\limits^ \to )$ around any closed path or circuit is equal to ${\mu _0}$(absolute permeability of free space) times the total current (I) encircling the closed circuit.
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0}{I_{enclosed}}$
This is the mathematical expression of the Ampere's circuital law.
A toroid solenoid is an anchor ring around which a large number of turns of a metallic wire are wound.When current passes through the toroidal solenoid, the magnetic field produced will be same at all points on the circumference of the ring of the toroid and the direction of the magnetic field will be tangent to the ring.
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0} \times (total current)$
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0}(2\pi rn)I$................(1)
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = B(2\pi r)$..................(2)
on equating equation 1 and 2
$ \Rightarrow B(2\pi r) = {\mu _0} \times (2\pi rn)I $
$ \Rightarrow B = {\mu _0}nI$
(Cancelling the common terms)
Now, we will calculate the second part of the solution.
(B) When the current is flowing through the coil having two ends as shown in the figure in the question given the end from which current enters is called as north pole and the other end from which the current leaves is known as south pole.Thus the current carrying coil act as a magnetic dipole which has north and south pole; which is denoted by:
$M = nIA$
(M is the magnetic dipole, n is the number of turns of the coil, I is the current flowing and A is the surface area of the coil).
When the observer sees the toroid in the figure shown, observer sees the south pole of the toroid.
Note: In a current carrying wire the direction of the north pole and the south pole can be detected by using Right hand thumb rule and Maxwell's screw rule. When we grasp the fingers in the around the current carrying wire and points the thumb in the direction of the current flowing .
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0}{I_{enclosed}}$ (B is the magnetic field, length of the conductor and I is the current flowing)
A toroid works as an inductor which boosts the frequency to appropriate levels. Using the above relations we will solve the given problem.
Complete step by step solution:
(A) Let us state the ampere's Circuital Law and its derivation with an application of toroid:
Ampere's circuital law states that the line integral of magnetic field $(\mathop B\limits^ \to )$ around any closed path or circuit is equal to ${\mu _0}$(absolute permeability of free space) times the total current (I) encircling the closed circuit.
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0}{I_{enclosed}}$
This is the mathematical expression of the Ampere's circuital law.
A toroid solenoid is an anchor ring around which a large number of turns of a metallic wire are wound.When current passes through the toroidal solenoid, the magnetic field produced will be same at all points on the circumference of the ring of the toroid and the direction of the magnetic field will be tangent to the ring.
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0} \times (total current)$
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0}(2\pi rn)I$................(1)
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = B(2\pi r)$..................(2)
on equating equation 1 and 2
$ \Rightarrow B(2\pi r) = {\mu _0} \times (2\pi rn)I $
$ \Rightarrow B = {\mu _0}nI$
(Cancelling the common terms)
Now, we will calculate the second part of the solution.
(B) When the current is flowing through the coil having two ends as shown in the figure in the question given the end from which current enters is called as north pole and the other end from which the current leaves is known as south pole.Thus the current carrying coil act as a magnetic dipole which has north and south pole; which is denoted by:
$M = nIA$
(M is the magnetic dipole, n is the number of turns of the coil, I is the current flowing and A is the surface area of the coil).
When the observer sees the toroid in the figure shown, observer sees the south pole of the toroid.
Note: In a current carrying wire the direction of the north pole and the south pole can be detected by using Right hand thumb rule and Maxwell's screw rule. When we grasp the fingers in the around the current carrying wire and points the thumb in the direction of the current flowing .
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Other Pages
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements