
(A) State Ampere’s circuital law. Use this law to obtain the expression for the magnetic field inside an air cored toroid of average radius r having ‘n’ turns per unit length and carrying a steady current I.
(B) An observer to the left of a solenoid of N terms each of cross section area A observes that a steady current I in it flows in the clockwise direction. Depict the magnetic field lines due to the solenoid specifying its polarity and show that it acts as a bar magnet of magnetic moment m = NIA.


Answer
418.2k+ views
Hint: Ampere's Circuital Law states that the closed line integral of magnetic field around a current carrying conductor is equal to absolute permeability times the total current threading the conductor.
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0}{I_{enclosed}}$ (B is the magnetic field, length of the conductor and I is the current flowing)
A toroid works as an inductor which boosts the frequency to appropriate levels. Using the above relations we will solve the given problem.
Complete step by step solution:
(A) Let us state the ampere's Circuital Law and its derivation with an application of toroid:
Ampere's circuital law states that the line integral of magnetic field $(\mathop B\limits^ \to )$ around any closed path or circuit is equal to ${\mu _0}$(absolute permeability of free space) times the total current (I) encircling the closed circuit.
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0}{I_{enclosed}}$
This is the mathematical expression of the Ampere's circuital law.
A toroid solenoid is an anchor ring around which a large number of turns of a metallic wire are wound.When current passes through the toroidal solenoid, the magnetic field produced will be same at all points on the circumference of the ring of the toroid and the direction of the magnetic field will be tangent to the ring.
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0} \times (total current)$
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0}(2\pi rn)I$................(1)
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = B(2\pi r)$..................(2)
on equating equation 1 and 2
$ \Rightarrow B(2\pi r) = {\mu _0} \times (2\pi rn)I $
$ \Rightarrow B = {\mu _0}nI$
(Cancelling the common terms)
Now, we will calculate the second part of the solution.
(B) When the current is flowing through the coil having two ends as shown in the figure in the question given the end from which current enters is called as north pole and the other end from which the current leaves is known as south pole.Thus the current carrying coil act as a magnetic dipole which has north and south pole; which is denoted by:
$M = nIA$
(M is the magnetic dipole, n is the number of turns of the coil, I is the current flowing and A is the surface area of the coil).
When the observer sees the toroid in the figure shown, observer sees the south pole of the toroid.
Note: In a current carrying wire the direction of the north pole and the south pole can be detected by using Right hand thumb rule and Maxwell's screw rule. When we grasp the fingers in the around the current carrying wire and points the thumb in the direction of the current flowing .
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0}{I_{enclosed}}$ (B is the magnetic field, length of the conductor and I is the current flowing)
A toroid works as an inductor which boosts the frequency to appropriate levels. Using the above relations we will solve the given problem.
Complete step by step solution:
(A) Let us state the ampere's Circuital Law and its derivation with an application of toroid:
Ampere's circuital law states that the line integral of magnetic field $(\mathop B\limits^ \to )$ around any closed path or circuit is equal to ${\mu _0}$(absolute permeability of free space) times the total current (I) encircling the closed circuit.
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0}{I_{enclosed}}$
This is the mathematical expression of the Ampere's circuital law.
A toroid solenoid is an anchor ring around which a large number of turns of a metallic wire are wound.When current passes through the toroidal solenoid, the magnetic field produced will be same at all points on the circumference of the ring of the toroid and the direction of the magnetic field will be tangent to the ring.
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0} \times (total current)$
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = {\mu _0}(2\pi rn)I$................(1)
$\oint {\mathop B\limits^ \to } .\mathop {dl}\limits^ \to = B(2\pi r)$..................(2)
on equating equation 1 and 2
$ \Rightarrow B(2\pi r) = {\mu _0} \times (2\pi rn)I $
$ \Rightarrow B = {\mu _0}nI$
(Cancelling the common terms)
Now, we will calculate the second part of the solution.
(B) When the current is flowing through the coil having two ends as shown in the figure in the question given the end from which current enters is called as north pole and the other end from which the current leaves is known as south pole.Thus the current carrying coil act as a magnetic dipole which has north and south pole; which is denoted by:
$M = nIA$
(M is the magnetic dipole, n is the number of turns of the coil, I is the current flowing and A is the surface area of the coil).
When the observer sees the toroid in the figure shown, observer sees the south pole of the toroid.
Note: In a current carrying wire the direction of the north pole and the south pole can be detected by using Right hand thumb rule and Maxwell's screw rule. When we grasp the fingers in the around the current carrying wire and points the thumb in the direction of the current flowing .
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Course 2025: Get All the Relevant Details

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Oscillation Class 11 Notes: CBSE Physics Chapter 13

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

NCERT Solutions for Class 11 Physics Chapter 14 Waves
