
A stone is thrown horizontally under gravity with a speed of $10m/\sec $. Find the radius of curvature of its trajectory at the end of $3\sec $ after motion began.
(A) $10\sqrt {10} m$
(B) $100\sqrt {10} m$
(C) $\sqrt {10} m$
(D) $100m$
Answer
232.8k+ views
Hint: When an object follows a curved path, where its velocity is tangential to the shape of the curve formed. The radius of curvature for such a motion is given by the square of the tangential velocity of the object divided by the component of its acceleration, which is normal to this velocity.
Complete step by step answer:
Suppose that a body moves in an arbitrary curved path, the motion is caused by a velocity which is always tangential to the curve, and acceleration does not act along the same line as the velocity, in other words, it acts at an angle to the velocity. In case of a circle, this angle between acceleration and velocity is $90^\circ $. Thus, the radius of curvature formed by that instantaneous circle in a curve is given by-
$r = \dfrac{{{v_t}^2}}{{{a_N}}}$
Here,${v_t}$ is the tangential velocity.
${a_N}$ is that component of acceleration, which is perpendicular to the tangential velocity at a given instant.
And $r$ is the radius of curvature.

In the question, it is given that the ball is thrown with a horizontal velocity under the action of gravity. It follows a parabolic path due to the projectile motion.
To determine the velocity $\left( {{v_t}} \right)$at time $t = 3\sec $, we use the first equation of motion.
$\vec V = \vec U + \vec at$
Here, in the vertical direction,
The final velocity,$\vec V = {\vec v_y}\hat j$
The initial velocity, $\vec U = 0$ (it has no initial vertical velocity as the stone is thrown horizontally)
The acceleration is equal to the acceleration due to gravity,
$\vec a = - \vec g\hat j$
We have,
${\vec v_y} = 0 + ( - 10) \times 3$
$ \Rightarrow {\vec v_y} = - 30\hat j$(since it moves downwards, it has a negative sign.)
The horizontal velocity of the stone remains constant, therefore ${\vec v_x} = 10\hat i$.
The tangential velocity is given by-
${\vec v_t} = {\vec v_x}\hat i + {\vec v_y}\hat j$
$ \Rightarrow {\vec v_t} = 10\hat i - 30\hat j$
Magnitude,
\[\left| {{{\vec v}_t}} \right| = \sqrt {{{10}^2} + {{30}^2}} = \sqrt {1000} \]
$ \Rightarrow {v_t} = 10\sqrt {10} $
Now for the acceleration, the only force acting here is the gravitational force which is in the vertical direction. Therefore, to make it perpendicular to ${\vec v_t}$, we shift it by an angle $\theta $.
Such that, ${a_N} = g\cos \theta $
Since the angles ${v_x},{v_y}$ and ${v_t},{a_N}$ are both equal to $90^\circ $. Therefore the angle between ${v_x},{v_t}$ and ${v_y},{a_N}$ should also be equal to $\theta $.
Therefore,

$\cos \theta = \dfrac{{{v_x}}}{{{v_t}}} = \dfrac{{10}}{{10\sqrt {10} }}$
$ \Rightarrow \cos \theta = \dfrac{1}{{\sqrt {10} }}$
The value of normal acceleration,
Taking $g = 10m/{s^2}$
${a_N} = 10 \times \dfrac{1}{{\sqrt {10} }}$
$ \Rightarrow {a_N} = \sqrt {10} $
The radius of curvature is given by,
$r = \dfrac{{{v_t}^2}}{{{a_N}}}$
$ \Rightarrow r = \dfrac{{{{(10\sqrt {10} )}^2}}}{{\sqrt {10} }} = \dfrac{{1000}}{{\sqrt {10} }}$
$ \Rightarrow r = 100\sqrt {10} $
Thus option (B) is correct.
Note: The radius of curvature is defined for circles, but curves (or the curved path traced by a particle’s motion) that do not follow the equation of a circle can also have an instantaneous radius and center of curvature. This is done by using the components of that motion, which can create a circular path
Complete step by step answer:
Suppose that a body moves in an arbitrary curved path, the motion is caused by a velocity which is always tangential to the curve, and acceleration does not act along the same line as the velocity, in other words, it acts at an angle to the velocity. In case of a circle, this angle between acceleration and velocity is $90^\circ $. Thus, the radius of curvature formed by that instantaneous circle in a curve is given by-
$r = \dfrac{{{v_t}^2}}{{{a_N}}}$
Here,${v_t}$ is the tangential velocity.
${a_N}$ is that component of acceleration, which is perpendicular to the tangential velocity at a given instant.
And $r$ is the radius of curvature.

In the question, it is given that the ball is thrown with a horizontal velocity under the action of gravity. It follows a parabolic path due to the projectile motion.
To determine the velocity $\left( {{v_t}} \right)$at time $t = 3\sec $, we use the first equation of motion.
$\vec V = \vec U + \vec at$
Here, in the vertical direction,
The final velocity,$\vec V = {\vec v_y}\hat j$
The initial velocity, $\vec U = 0$ (it has no initial vertical velocity as the stone is thrown horizontally)
The acceleration is equal to the acceleration due to gravity,
$\vec a = - \vec g\hat j$
We have,
${\vec v_y} = 0 + ( - 10) \times 3$
$ \Rightarrow {\vec v_y} = - 30\hat j$(since it moves downwards, it has a negative sign.)
The horizontal velocity of the stone remains constant, therefore ${\vec v_x} = 10\hat i$.
The tangential velocity is given by-
${\vec v_t} = {\vec v_x}\hat i + {\vec v_y}\hat j$
$ \Rightarrow {\vec v_t} = 10\hat i - 30\hat j$
Magnitude,
\[\left| {{{\vec v}_t}} \right| = \sqrt {{{10}^2} + {{30}^2}} = \sqrt {1000} \]
$ \Rightarrow {v_t} = 10\sqrt {10} $
Now for the acceleration, the only force acting here is the gravitational force which is in the vertical direction. Therefore, to make it perpendicular to ${\vec v_t}$, we shift it by an angle $\theta $.
Such that, ${a_N} = g\cos \theta $
Since the angles ${v_x},{v_y}$ and ${v_t},{a_N}$ are both equal to $90^\circ $. Therefore the angle between ${v_x},{v_t}$ and ${v_y},{a_N}$ should also be equal to $\theta $.
Therefore,

$\cos \theta = \dfrac{{{v_x}}}{{{v_t}}} = \dfrac{{10}}{{10\sqrt {10} }}$
$ \Rightarrow \cos \theta = \dfrac{1}{{\sqrt {10} }}$
The value of normal acceleration,
Taking $g = 10m/{s^2}$
${a_N} = 10 \times \dfrac{1}{{\sqrt {10} }}$
$ \Rightarrow {a_N} = \sqrt {10} $
The radius of curvature is given by,
$r = \dfrac{{{v_t}^2}}{{{a_N}}}$
$ \Rightarrow r = \dfrac{{{{(10\sqrt {10} )}^2}}}{{\sqrt {10} }} = \dfrac{{1000}}{{\sqrt {10} }}$
$ \Rightarrow r = 100\sqrt {10} $
Thus option (B) is correct.
Note: The radius of curvature is defined for circles, but curves (or the curved path traced by a particle’s motion) that do not follow the equation of a circle can also have an instantaneous radius and center of curvature. This is done by using the components of that motion, which can create a circular path
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

