
A thief is running away on a straight road in the jeep moving with a speed of 9 m/s. A policeman on a motorcycle chases him at a speed of 10 m/s. If at any instant the separation between the jeep and the motorcycle is 100 m, then in what time does the policeman catch the thief?
A) 1s
B) 9s
C) 10s
D) 100s
Answer
232.8k+ views
Hint: Given problem is an example of a relative motion in a straight line. Just think how will the thief observe the policeman? Will the policeman move at 10 m/s or at a lower speed w.r.t the thief? Make the thief as the frame of reference and try to solve the problem.
Formula Used:
If two things or persons are in a motion in the same direction with different-different speeds and speed of one (let’s say \[u\]) is more than the speed of another (let’s say \[v\]).
Then the relative speed of one with respect to another is \[\mathop V\nolimits_{rel} = (u - v)m/s\]
Complete step by step answer:
Speed of policeman on motor cycle = 10 m/s
Speed of thief in the jeep = 9 m/s
The relative speed of policeman w.r.t thief is calculated i.e.
Speed of policeman on motorcycle - Speed of thief in the jeep i.e.
\[\mathop V\nolimits_{rel} = \](10-9) m/s =1m/s
Step 2: We know that, at some instant separation between policeman and thief i.e. \[S = \]100m
The correct option is (D).
Note: This problem can also be solved from earth’s frame of reference too. Starting with the initial 100m gap between police and thief and considering police’s initial position as origin, write the equation of distance covered for both police and thief and equate them at time t(when police will catch the thief and hence their distance will be the same from origin).
Formula Used:
If two things or persons are in a motion in the same direction with different-different speeds and speed of one (let’s say \[u\]) is more than the speed of another (let’s say \[v\]).
Then the relative speed of one with respect to another is \[\mathop V\nolimits_{rel} = (u - v)m/s\]
Complete step by step answer:
Speed of policeman on motor cycle = 10 m/s
Speed of thief in the jeep = 9 m/s
The relative speed of policeman w.r.t thief is calculated i.e.
Speed of policeman on motorcycle - Speed of thief in the jeep i.e.
\[\mathop V\nolimits_{rel} = \](10-9) m/s =1m/s
Step 2: We know that, at some instant separation between policeman and thief i.e. \[S = \]100m
Then time taken by the policeman to catch the thief i.e.
\[t = \dfrac{S}{{\mathop V\nolimits_{rel} }}\]
\[t = \dfrac{{100}}{1} = 100s\]
The correct option is (D).
Note: This problem can also be solved from earth’s frame of reference too. Starting with the initial 100m gap between police and thief and considering police’s initial position as origin, write the equation of distance covered for both police and thief and equate them at time t(when police will catch the thief and hence their distance will be the same from origin).
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

