Answer
Verified
109.2k+ views
Hint: In order to solve this question you have to know all the concepts related to lenses and apply the lens maker formula for both the liquids giving in the question. Then from that lens maker formula find the focal length for both the liquids and then compare.
Formula used:
The lens maker formula is given by,
$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $f$ is the focal length
$\mu $ is the refractive index
${R_1}$ and ${R_2}$ are the radius of aperture.
Complete step by step solution:
According to the lens maker formula
$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $f$ is the focal length
$\mu $ is the refractive index
${R_1}$ and ${R_2}$ are the radius of aperture.
Now taking the ratio of focal length in first liquid to the focal length in air
$\dfrac{{{f_1}}}{f} = \dfrac{{(\mu - 1)}}{{\left( {\dfrac{\mu }{{{\mu _m}}} - 1} \right)}}$
On putting the values of refractive indices given, we have
$ \Rightarrow \dfrac{{{f_1}}}{f} = \dfrac{{\left( {\dfrac{3}{2} - 1} \right)}}{{\left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{4}{3}}} - 1} \right)}}$
On further solving, we get
$ \Rightarrow {f_1} = 4f$
Now taking the ratio of focal length in second liquid to the focal length in air, we have
$\dfrac{{{f_2}}}{f} = \dfrac{{(\mu - 1)}}{{\left( {\dfrac{\mu }{{{\mu _m}}} - 1} \right)}}$
On putting the values of refractive indices given, we have
$ \Rightarrow \dfrac{{{f_2}}}{f} = \dfrac{{\left( {\dfrac{3}{2} - 1} \right)}}{{\left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{5}{3}}} - 1} \right)}} = - 5$
On the above equation, we have
$ \Rightarrow {f_2} < 0$
Hence, from the above solution we conclude that ${f_1} > f$ and ${f_2}$ becomes negative
Therefore, the correct option is (D).
Note: The focal length of the lens depends upon refractive index of lens with respect to the medium. The focal length of a lens is very much affected when immersed in water, after immersing the lens in the water, the focal length of the lens increases. The focal length of a lens is defined mainly by two properties of a lens that is the material's index of refraction and the curvature of the lens' surfaces.
Formula used:
The lens maker formula is given by,
$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $f$ is the focal length
$\mu $ is the refractive index
${R_1}$ and ${R_2}$ are the radius of aperture.
Complete step by step solution:
According to the lens maker formula
$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $f$ is the focal length
$\mu $ is the refractive index
${R_1}$ and ${R_2}$ are the radius of aperture.
Now taking the ratio of focal length in first liquid to the focal length in air
$\dfrac{{{f_1}}}{f} = \dfrac{{(\mu - 1)}}{{\left( {\dfrac{\mu }{{{\mu _m}}} - 1} \right)}}$
On putting the values of refractive indices given, we have
$ \Rightarrow \dfrac{{{f_1}}}{f} = \dfrac{{\left( {\dfrac{3}{2} - 1} \right)}}{{\left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{4}{3}}} - 1} \right)}}$
On further solving, we get
$ \Rightarrow {f_1} = 4f$
Now taking the ratio of focal length in second liquid to the focal length in air, we have
$\dfrac{{{f_2}}}{f} = \dfrac{{(\mu - 1)}}{{\left( {\dfrac{\mu }{{{\mu _m}}} - 1} \right)}}$
On putting the values of refractive indices given, we have
$ \Rightarrow \dfrac{{{f_2}}}{f} = \dfrac{{\left( {\dfrac{3}{2} - 1} \right)}}{{\left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{5}{3}}} - 1} \right)}} = - 5$
On the above equation, we have
$ \Rightarrow {f_2} < 0$
Hence, from the above solution we conclude that ${f_1} > f$ and ${f_2}$ becomes negative
Therefore, the correct option is (D).
Note: The focal length of the lens depends upon refractive index of lens with respect to the medium. The focal length of a lens is very much affected when immersed in water, after immersing the lens in the water, the focal length of the lens increases. The focal length of a lens is defined mainly by two properties of a lens that is the material's index of refraction and the curvature of the lens' surfaces.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main