Answer
Verified
112.8k+ views
Hint The given particles are in elastic collision. The initial and final velocities, mass of the particle, the area of the metal plate, and the volume density of the gas is provided. To solve this question we must know the concepts of elastic collision and the collision of particles in one and two dimensions. We know that force can be determined by change in momentum. Use these concepts to find the answer.
Complete step by step solution
The mass of gas particles is ${\text{m = 1}}{{\text{0}}^{{\text{ - 26}}}}{\text{kg}} $
Velocity before hitting the metal pate (before collision), ${{\text{v}}_{\text{0}}}{\text{ = 5m/s}} $
Velocity after collision, ${\text{v = 2m/s}} $
Volume density of the gas particles is ${\text{n = 1}}{{\text{0}}^{{\text{25}}}}{\text{ per }}{{\text{m}}^3} $
Area of the beam, ${\text{A = 1}}{{\text{m}}^{\text{2}}} $
The external force, F=? (The force required to move the plate with a constant velocity, ${\text{v = 2m/s}} $)
Here the force required to move the plate is determined by the change in the momentum of the particle on the given area of the metal.
$ \Rightarrow {\text{F = }}\Delta {\text{PA }} \to {\text{1}} $
F is the force.
$\Delta P $ is the change in the momentum
We know that Momentum is the product of mass and velocity.
Then, the equation 1 becomes,
$ \Rightarrow {\text{F = m}}\dfrac{{d{v_0}}}{{dt}}{\text{nA}} - {\text{m}}\dfrac{{dv}}{{dt}}{\text{nA}} $ (mass is constant)
$ \Rightarrow {\text{F = mnA}}\left( {\dfrac{{d{v_0}}}{{dt}} - \dfrac{{dv}}{{dt}}} \right) $
Differentiate
\[ \Rightarrow {\text{F = mnA}}\left( {{v_0}^2 - {v^2}} \right)\]
\[ \Rightarrow {\text{F = mnA}}{\left( {{v_0} + v} \right)^2} - {\left( {{v_0} - v} \right)^2}\]
m is the mass
${v_0} $ is the initial velocity
v is the final velocity
n is the volume density of the gas particles
The external force, F=?
\[ \Rightarrow {\text{F = 2}} \times {\text{1}}{{\text{0}}^{ - 26}} \times {10^{25}} \times 1 \times \left( {{{\left( {5 + 2} \right)}^2} - {{\left( {5 - 2} \right)}^2}} \right)\]
\[ \Rightarrow {\text{F = 2}} \times {\text{1}}{{\text{0}}^{ - 26}} \times {10^{25}} \times 1 \times \left( {49 - 9} \right)\]
\[ \Rightarrow {\text{F = 2}} \times {\text{1}}{{\text{0}}^{ - 26}} \times {10^{25}} \times 1 \times 40\]
\[ \Rightarrow {\text{F = 8N}}\]
The external force, F required to move the plate is \[{\text{F = 8N}}\]
Hint Collision occurs when two objects hit one another. When the object collides with each other its momentum is conserved for an isolated system. The principle of conservation of momentum says that the momentum before collision is equal to the momentum after the collision. The difference between a one dimensional and two dimensional collision is in one dimensional collision, change in velocities of the particles occurs only in one direction so, conservation of momentum is in one direction only whereas in two dimensional, change in velocities of the particles occurs in two direction so, conservation of momentum is in two direction.
Complete step by step solution
The mass of gas particles is ${\text{m = 1}}{{\text{0}}^{{\text{ - 26}}}}{\text{kg}} $
Velocity before hitting the metal pate (before collision), ${{\text{v}}_{\text{0}}}{\text{ = 5m/s}} $
Velocity after collision, ${\text{v = 2m/s}} $
Volume density of the gas particles is ${\text{n = 1}}{{\text{0}}^{{\text{25}}}}{\text{ per }}{{\text{m}}^3} $
Area of the beam, ${\text{A = 1}}{{\text{m}}^{\text{2}}} $
The external force, F=? (The force required to move the plate with a constant velocity, ${\text{v = 2m/s}} $)
Here the force required to move the plate is determined by the change in the momentum of the particle on the given area of the metal.
$ \Rightarrow {\text{F = }}\Delta {\text{PA }} \to {\text{1}} $
F is the force.
$\Delta P $ is the change in the momentum
We know that Momentum is the product of mass and velocity.
Then, the equation 1 becomes,
$ \Rightarrow {\text{F = m}}\dfrac{{d{v_0}}}{{dt}}{\text{nA}} - {\text{m}}\dfrac{{dv}}{{dt}}{\text{nA}} $ (mass is constant)
$ \Rightarrow {\text{F = mnA}}\left( {\dfrac{{d{v_0}}}{{dt}} - \dfrac{{dv}}{{dt}}} \right) $
Differentiate
\[ \Rightarrow {\text{F = mnA}}\left( {{v_0}^2 - {v^2}} \right)\]
\[ \Rightarrow {\text{F = mnA}}{\left( {{v_0} + v} \right)^2} - {\left( {{v_0} - v} \right)^2}\]
m is the mass
${v_0} $ is the initial velocity
v is the final velocity
n is the volume density of the gas particles
The external force, F=?
\[ \Rightarrow {\text{F = 2}} \times {\text{1}}{{\text{0}}^{ - 26}} \times {10^{25}} \times 1 \times \left( {{{\left( {5 + 2} \right)}^2} - {{\left( {5 - 2} \right)}^2}} \right)\]
\[ \Rightarrow {\text{F = 2}} \times {\text{1}}{{\text{0}}^{ - 26}} \times {10^{25}} \times 1 \times \left( {49 - 9} \right)\]
\[ \Rightarrow {\text{F = 2}} \times {\text{1}}{{\text{0}}^{ - 26}} \times {10^{25}} \times 1 \times 40\]
\[ \Rightarrow {\text{F = 8N}}\]
The external force, F required to move the plate is \[{\text{F = 8N}}\]
Hint Collision occurs when two objects hit one another. When the object collides with each other its momentum is conserved for an isolated system. The principle of conservation of momentum says that the momentum before collision is equal to the momentum after the collision. The difference between a one dimensional and two dimensional collision is in one dimensional collision, change in velocities of the particles occurs only in one direction so, conservation of momentum is in one direction only whereas in two dimensional, change in velocities of the particles occurs in two direction so, conservation of momentum is in two direction.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line