Answer
Verified
110.4k+ views
Hint: Recall that whenever two objects or bodies are in contact with each other, they exert a force on each other. One such force is the force of tension. The force of tension is a force carried by a rope, string or cable that acts along the length of the medium.
Complete step by step solution:
Given that the mass of rope is \[ = m\]
And the mass of the monkey is $ = M$
Acceleration of the monkey climbing up the rope is $ = a$
Now the net force of tension that is exerted by the rope on the ceiling is the sum of two forces acting on the rope. When the monkey will climb the ceiling, it will also exert a force on the ceiling. Also the rope will exert a force on itself in order to balance when the monkey climbs.
So the net force is given as
$\Rightarrow {T_{net}} = {F_{rope}} + {F_{monkey}}$or
$\Rightarrow {T_{net}} = {T_1} + {T_2}$---(i)
The force of tension acting on an object is equal to the product of the mass of the object and the force of gravity or the acceleration forces acting on the object.
The force exerted by the rope is ${T_1} = mg$
The force exerted by the monkey on ceiling is $ \Rightarrow {T_2} - Mg = Ma$
Or $ \Rightarrow {T_2} = Mg + Ma$
$ \Rightarrow {T_2} = M(g + a)$
Substitute the value of ${T_1},{T_2}$in equation (i),
$ \Rightarrow {T_{net}} = mg + M(g + a)$
The force exerted by the rope on the ceiling is $mg + M(g + a)$.
Option B is the right answer.
Note: It is to be noted that the force of tension is also known as the pair of action and reaction forces acting at the end of the object taken. The force of tension is felt in both the directions of the rope, string or cable. It is a pulling force and not a pushing force as the rope can not push.
Complete step by step solution:
Given that the mass of rope is \[ = m\]
And the mass of the monkey is $ = M$
Acceleration of the monkey climbing up the rope is $ = a$
Now the net force of tension that is exerted by the rope on the ceiling is the sum of two forces acting on the rope. When the monkey will climb the ceiling, it will also exert a force on the ceiling. Also the rope will exert a force on itself in order to balance when the monkey climbs.
So the net force is given as
$\Rightarrow {T_{net}} = {F_{rope}} + {F_{monkey}}$or
$\Rightarrow {T_{net}} = {T_1} + {T_2}$---(i)
The force of tension acting on an object is equal to the product of the mass of the object and the force of gravity or the acceleration forces acting on the object.
The force exerted by the rope is ${T_1} = mg$
The force exerted by the monkey on ceiling is $ \Rightarrow {T_2} - Mg = Ma$
Or $ \Rightarrow {T_2} = Mg + Ma$
$ \Rightarrow {T_2} = M(g + a)$
Substitute the value of ${T_1},{T_2}$in equation (i),
$ \Rightarrow {T_{net}} = mg + M(g + a)$
The force exerted by the rope on the ceiling is $mg + M(g + a)$.
Option B is the right answer.
Note: It is to be noted that the force of tension is also known as the pair of action and reaction forces acting at the end of the object taken. The force of tension is felt in both the directions of the rope, string or cable. It is a pulling force and not a pushing force as the rope can not push.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main