
A vertical hanging bar of length $l$ and mass $m$ per unit length carries a load of mass M at lower end, its upper end clamped at a rigid support. The tensile stress a distance $x$ from support is (A-area of cross-section of bar)
A) $\dfrac{{Mg + mg(1 - x)}}{A}$
B) $\dfrac{{Mg}}{A}$
C) $\dfrac{{Mg + mgl}}{A}$
D) $\dfrac{{(M + M)gx}}{{Al}}$
Answer
131.4k+ views
Hint: In order to find the correct solution of the given question, we need to find the value of total force acting at a distance $x$from the support. After that we need to use the formula for the tensile stress which relates the tensile stress with total force and area on which the force is acting. Then we can finally conclude with the correct solution of the given question.
Complete step by step solution:
First of all we need to find the total forces acting on the system.
The force acting on the body of mass$m$at distance of \[(l - x)\] can be written as, ${F_1} = m(l - x)g$
and the force acting on the body of mass $M$ can be written as, ${F_2} = Mg$
Now, we need to find the total force acting on the system.
So, we need to add both the forces acting on the given system.
Therefore, we can write it as,
$F = {F_1} + {F_2}$
$ \Rightarrow F = m(l - x)g + Mg$……………….. (i)
Now, we know that the tensile stress of a body is the ratio of the force acting on the body per unit area.
Mathematically, we can write it as, $\sigma = \dfrac{F}{A}$
From equation (i), we can get,
$\Rightarrow \sigma = \dfrac{{m(l - x)g + Mg}}{A}$
Hence, option (A), i.e. $\dfrac{{Mg + m(l - x)g}}{A}$ is the correct choice of the given question.
Note: We define tensile stress as the force applied to a cross-sectional area. Mathematically, it is represented as,$\sigma = \dfrac{F}{A}$. We should not confuse tensile stress with tensile strength. The tensile strength of a body is the amount of force required to break a cross-sectional area. Mathematically, it is represented by, $S = \dfrac{P}{A}$.
Complete step by step solution:
First of all we need to find the total forces acting on the system.
The force acting on the body of mass$m$at distance of \[(l - x)\] can be written as, ${F_1} = m(l - x)g$
and the force acting on the body of mass $M$ can be written as, ${F_2} = Mg$
Now, we need to find the total force acting on the system.
So, we need to add both the forces acting on the given system.
Therefore, we can write it as,
$F = {F_1} + {F_2}$
$ \Rightarrow F = m(l - x)g + Mg$……………….. (i)
Now, we know that the tensile stress of a body is the ratio of the force acting on the body per unit area.
Mathematically, we can write it as, $\sigma = \dfrac{F}{A}$
From equation (i), we can get,
$\Rightarrow \sigma = \dfrac{{m(l - x)g + Mg}}{A}$
Hence, option (A), i.e. $\dfrac{{Mg + m(l - x)g}}{A}$ is the correct choice of the given question.
Note: We define tensile stress as the force applied to a cross-sectional area. Mathematically, it is represented as,$\sigma = \dfrac{F}{A}$. We should not confuse tensile stress with tensile strength. The tensile strength of a body is the amount of force required to break a cross-sectional area. Mathematically, it is represented by, $S = \dfrac{P}{A}$.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

The x t graph of a particle undergoing simple harmonic class 11 physics JEE_MAIN

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Molar Conductivity

Raoult's Law with Examples

Other Pages
Waves Class 11 Notes: CBSE Physics Chapter 14

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter
