
A wave of frequency \[{\rm{500Hz}}\] has a velocity of \[{\rm{360m}}{{\rm{s}}^{{\rm{ - 1}}}}\]. Calculate the distance between two points that are \[{60^0}\] out of phase.
A. 12 cm
B. 18 cm
C. 17 cm
D. 25 cm
Answer
134.1k+ views
Hint:To proceed with the problem, let’s see what the path difference and phase difference say. The distance travelled by the two waves from their respective sources to a given point on the pattern is known as path difference. The phase difference is defined as the difference in phase angle between two waves. Now we can solve the problem by considering the definitions.
Formula used:
The formula to find the wavelength is,
\[\lambda = \dfrac{v}{f}\]
Where, \[v\] is the velocity of the wave and \[f\] is the frequency of the wave.
To find the path difference, the formula is given by,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
Where, \[\Delta x\] is the path difference, \[\lambda \] is the wavelength and \[\Delta \varphi \] is the phase difference.
Complete step by step solution:
To find the path difference, first, we need to find the
\[\lambda = \dfrac{v}{f}\]
\[ \Rightarrow \lambda = \dfrac{{360}}{{500}}\]
By data we have \[{\rm{v = 360m}}{{\rm{s}}^{{\rm{ - 1}}}}\] and \[f = 500Hz\].
\[\lambda = 0.72\,m\]
Now let’s find the path difference or the distance between the two points from the above formula,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{{2\pi }} \times \dfrac{\pi }{3}\]
By data, \[\Delta \varphi = {60^0} = \dfrac{\pi }{3}\]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{6}\]
Now substitute the value of \[\lambda \]in the above equation we get,
\[\Delta x = \dfrac{{0.72}}{6}\]
\[ \Rightarrow \Delta x = 0.12\,m\]
Convert the above value from m to cm we get,
\[\therefore \Delta x = 12\,cm\]
Therefore, the distance between the two points is 12 cm.
Hence, option A is the correct answer.
Note:Now will see on what factors the frequency of a wave depends. As we know that the frequency is the number of cycles per second hence it depends only on the frequency of the source.
Formula used:
The formula to find the wavelength is,
\[\lambda = \dfrac{v}{f}\]
Where, \[v\] is the velocity of the wave and \[f\] is the frequency of the wave.
To find the path difference, the formula is given by,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
Where, \[\Delta x\] is the path difference, \[\lambda \] is the wavelength and \[\Delta \varphi \] is the phase difference.
Complete step by step solution:
To find the path difference, first, we need to find the
\[\lambda = \dfrac{v}{f}\]
\[ \Rightarrow \lambda = \dfrac{{360}}{{500}}\]
By data we have \[{\rm{v = 360m}}{{\rm{s}}^{{\rm{ - 1}}}}\] and \[f = 500Hz\].
\[\lambda = 0.72\,m\]
Now let’s find the path difference or the distance between the two points from the above formula,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{{2\pi }} \times \dfrac{\pi }{3}\]
By data, \[\Delta \varphi = {60^0} = \dfrac{\pi }{3}\]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{6}\]
Now substitute the value of \[\lambda \]in the above equation we get,
\[\Delta x = \dfrac{{0.72}}{6}\]
\[ \Rightarrow \Delta x = 0.12\,m\]
Convert the above value from m to cm we get,
\[\therefore \Delta x = 12\,cm\]
Therefore, the distance between the two points is 12 cm.
Hence, option A is the correct answer.
Note:Now will see on what factors the frequency of a wave depends. As we know that the frequency is the number of cycles per second hence it depends only on the frequency of the source.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3

Waves Class 11 Notes: CBSE Physics Chapter 14
