
A wave of frequency \[{\rm{500Hz}}\] has a velocity of \[{\rm{360m}}{{\rm{s}}^{{\rm{ - 1}}}}\]. Calculate the distance between two points that are \[{60^0}\] out of phase.
A. 12 cm
B. 18 cm
C. 17 cm
D. 25 cm
Answer
216k+ views
Hint:To proceed with the problem, let’s see what the path difference and phase difference say. The distance travelled by the two waves from their respective sources to a given point on the pattern is known as path difference. The phase difference is defined as the difference in phase angle between two waves. Now we can solve the problem by considering the definitions.
Formula used:
The formula to find the wavelength is,
\[\lambda = \dfrac{v}{f}\]
Where, \[v\] is the velocity of the wave and \[f\] is the frequency of the wave.
To find the path difference, the formula is given by,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
Where, \[\Delta x\] is the path difference, \[\lambda \] is the wavelength and \[\Delta \varphi \] is the phase difference.
Complete step by step solution:
To find the path difference, first, we need to find the
\[\lambda = \dfrac{v}{f}\]
\[ \Rightarrow \lambda = \dfrac{{360}}{{500}}\]
By data we have \[{\rm{v = 360m}}{{\rm{s}}^{{\rm{ - 1}}}}\] and \[f = 500Hz\].
\[\lambda = 0.72\,m\]
Now let’s find the path difference or the distance between the two points from the above formula,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{{2\pi }} \times \dfrac{\pi }{3}\]
By data, \[\Delta \varphi = {60^0} = \dfrac{\pi }{3}\]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{6}\]
Now substitute the value of \[\lambda \]in the above equation we get,
\[\Delta x = \dfrac{{0.72}}{6}\]
\[ \Rightarrow \Delta x = 0.12\,m\]
Convert the above value from m to cm we get,
\[\therefore \Delta x = 12\,cm\]
Therefore, the distance between the two points is 12 cm.
Hence, option A is the correct answer.
Note:Now will see on what factors the frequency of a wave depends. As we know that the frequency is the number of cycles per second hence it depends only on the frequency of the source.
Formula used:
The formula to find the wavelength is,
\[\lambda = \dfrac{v}{f}\]
Where, \[v\] is the velocity of the wave and \[f\] is the frequency of the wave.
To find the path difference, the formula is given by,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
Where, \[\Delta x\] is the path difference, \[\lambda \] is the wavelength and \[\Delta \varphi \] is the phase difference.
Complete step by step solution:
To find the path difference, first, we need to find the
\[\lambda = \dfrac{v}{f}\]
\[ \Rightarrow \lambda = \dfrac{{360}}{{500}}\]
By data we have \[{\rm{v = 360m}}{{\rm{s}}^{{\rm{ - 1}}}}\] and \[f = 500Hz\].
\[\lambda = 0.72\,m\]
Now let’s find the path difference or the distance between the two points from the above formula,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{{2\pi }} \times \dfrac{\pi }{3}\]
By data, \[\Delta \varphi = {60^0} = \dfrac{\pi }{3}\]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{6}\]
Now substitute the value of \[\lambda \]in the above equation we get,
\[\Delta x = \dfrac{{0.72}}{6}\]
\[ \Rightarrow \Delta x = 0.12\,m\]
Convert the above value from m to cm we get,
\[\therefore \Delta x = 12\,cm\]
Therefore, the distance between the two points is 12 cm.
Hence, option A is the correct answer.
Note:Now will see on what factors the frequency of a wave depends. As we know that the frequency is the number of cycles per second hence it depends only on the frequency of the source.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

