Answer
Verified
99.9k+ views
Hint: To solve this question we can compare the given travelling wave equation with the general form of the equation. After comparing we get the values for the related terms of the equation.
Formula used:
The general form of the sinusoidal wave is given as,
\[y(x,t) = A\sin (kx - \omega t)\]
Where A is the amplitude
k is the wavenumber
\[\omega \] is the angular frequency
x is the displacement
t is the time taken
The formula for angular frequency is given as,
\[\omega = 2\pi f\]
Where f is an ordinary frequency
Complete answer:
Travelling wave equation is given as
y(x,t)=0.005sin(80.0x-3.0t)
As the general equation of wave is
\[y(x,t) = A\sin (kx - \omega t)\]
Now comparing both the equations, we get
k=80.0, \[\omega = 3\]
(a) Amplitude, A=0.005 m = 5 mm
(b) As we know that wavelength, \[\lambda = \dfrac{{2\pi }}{k}\]
So, \[\lambda = \dfrac{{2\pi }}{{80.0}} = \dfrac{\pi }{{40}}m\]
=7.85 cm
(c)As we know \[\omega = 2\pi f\]
So, \[f = \dfrac{3}{{2\pi }} = 0.48Hz\]
Also, we know that, \[T = \dfrac{1}{f}\]
So, \[T = \dfrac{{2\pi }}{3} = 2.09\sec \]
At a distance x = 30.0 cm (or 0.3 m) and time t = 20 s,
Putting the given values in the general equation, we have
\[y(x,t) = 0.005\sin (80 \times 0.3 - 3 \times 20)\]
\[ = 0.005\sin ( - 36rad)\]
\[ = 4.95mm{\rm{ }} \approx 5mm\]
Note:A travelling wave is defined as the wave that is moving in a space. A wave which is travelling in the positive direction of the x axis can be represented by the wave equation \[y(x,t) = A\sin (kx - \omega t)\]. Here A is the amplitude and k is the propagation constant.
Formula used:
The general form of the sinusoidal wave is given as,
\[y(x,t) = A\sin (kx - \omega t)\]
Where A is the amplitude
k is the wavenumber
\[\omega \] is the angular frequency
x is the displacement
t is the time taken
The formula for angular frequency is given as,
\[\omega = 2\pi f\]
Where f is an ordinary frequency
Complete answer:
Travelling wave equation is given as
y(x,t)=0.005sin(80.0x-3.0t)
As the general equation of wave is
\[y(x,t) = A\sin (kx - \omega t)\]
Now comparing both the equations, we get
k=80.0, \[\omega = 3\]
(a) Amplitude, A=0.005 m = 5 mm
(b) As we know that wavelength, \[\lambda = \dfrac{{2\pi }}{k}\]
So, \[\lambda = \dfrac{{2\pi }}{{80.0}} = \dfrac{\pi }{{40}}m\]
=7.85 cm
(c)As we know \[\omega = 2\pi f\]
So, \[f = \dfrac{3}{{2\pi }} = 0.48Hz\]
Also, we know that, \[T = \dfrac{1}{f}\]
So, \[T = \dfrac{{2\pi }}{3} = 2.09\sec \]
At a distance x = 30.0 cm (or 0.3 m) and time t = 20 s,
Putting the given values in the general equation, we have
\[y(x,t) = 0.005\sin (80 \times 0.3 - 3 \times 20)\]
\[ = 0.005\sin ( - 36rad)\]
\[ = 4.95mm{\rm{ }} \approx 5mm\]
Note:A travelling wave is defined as the wave that is moving in a space. A wave which is travelling in the positive direction of the x axis can be represented by the wave equation \[y(x,t) = A\sin (kx - \omega t)\]. Here A is the amplitude and k is the propagation constant.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main