
A wheel with 10 metallic spokes each 0.5 m long rotated with a speed of 120 rpm in a plane normal to the horizontal component of earth’s magnetic field \[{B_h}\] at a place. If \[{B_h} = 0.4G\] at the place. What is the induced emf between the axle and the rim of the wheel? (\[1G = {10^{ - 4}}T\])
(A) 0 V
(B) 0.628 mV
(C) 0.628 μV
(D) 62.8 μV
Answer
141k+ views
Hint: According to Faraday’s law of electromagnetic induction “When the flux of magnetic field through the area bounded by two consecutive spokes changes, an emf between the axle and the rim of the wheel will produce”.
The emf is given by
\[\varepsilon = - \dfrac{{d\phi }}{{dt}}\]
Where, \[\phi = \int {\vec B.d\vec s} \] is the flux of the magnetic field through the area.
Complete step by step answer:
Given
Number of spokes = 10
Length of each spoke or radius of the wheel (r) = 0.5 m
Angular speed of the wheel = 120 rev/min = \[4\pi {\text{ rad/s}}\]
Earth’s magnetic field (\[{B_h}\]) = 0.4 G =\[0.4 \times {10^4}T\]
Consider the (A) area covered by an angle is θ.
So, \[A = \pi {r^2}\dfrac{\theta }{{2\pi }}\]
\[\therefore A = {r^2}\dfrac{\theta }{2}\]
Now, The induced emf \[\varepsilon = - \dfrac{{d\phi }}{{dt}} = - \dfrac{{d(BA)}}{{dt}}\]
\[ \Rightarrow \varepsilon = - \dfrac{{Bd(A)}}{{dt}}\]……………….. (ii)
Substitute the given values in the equation (ii), we get
\[\Rightarrow \varepsilon = \dfrac{{2\pi \times 2 \times 0.4 \times {{10}^{ - 4}} \times {{(0.5)}^2}}}{2} = 6.28 \times {10^{ - 5}}V\]
\[\therefore \varepsilon = 0.628mV\]
Hence, Option (B) is the correct answer.
Note: Magnetic flux changes by change in:-
(i) Magnitude of magnetic field
(ii) Crossing Area and
(iii) Angle between magnetic field vector and area vector.
The direction of the induced magnetic field in a loop can be obtained by using an electromagnetic induction equation. If the flux increases with time, \[\dfrac{{d\phi }}{{dt}}\]is positive and ε will be negative similarly when \[\dfrac{{d\phi }}{{dt}}\]is negative ε will be positive.
The emf is given by
\[\varepsilon = - \dfrac{{d\phi }}{{dt}}\]
Where, \[\phi = \int {\vec B.d\vec s} \] is the flux of the magnetic field through the area.
Complete step by step answer:
Given
Number of spokes = 10
Length of each spoke or radius of the wheel (r) = 0.5 m
Angular speed of the wheel = 120 rev/min = \[4\pi {\text{ rad/s}}\]
Earth’s magnetic field (\[{B_h}\]) = 0.4 G =\[0.4 \times {10^4}T\]
Consider the (A) area covered by an angle is θ.
So, \[A = \pi {r^2}\dfrac{\theta }{{2\pi }}\]
\[\therefore A = {r^2}\dfrac{\theta }{2}\]
Now, The induced emf \[\varepsilon = - \dfrac{{d\phi }}{{dt}} = - \dfrac{{d(BA)}}{{dt}}\]
\[ \Rightarrow \varepsilon = - \dfrac{{Bd(A)}}{{dt}}\]……………….. (ii)
Substitute the given values in the equation (ii), we get
\[\Rightarrow \varepsilon = \dfrac{{2\pi \times 2 \times 0.4 \times {{10}^{ - 4}} \times {{(0.5)}^2}}}{2} = 6.28 \times {10^{ - 5}}V\]
\[\therefore \varepsilon = 0.628mV\]
Hence, Option (B) is the correct answer.
Note: Magnetic flux changes by change in:-
(i) Magnitude of magnetic field
(ii) Crossing Area and
(iii) Angle between magnetic field vector and area vector.
The direction of the induced magnetic field in a loop can be obtained by using an electromagnetic induction equation. If the flux increases with time, \[\dfrac{{d\phi }}{{dt}}\]is positive and ε will be negative similarly when \[\dfrac{{d\phi }}{{dt}}\]is negative ε will be positive.
Latest Vedantu courses for you
Grade 10 | MAHARASHTRABOARD | SCHOOL | English
Vedantu 10 Maharashtra Pro Lite (2025-26)
₹ per year
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
