Answer
Verified
114.9k+ views
Hint:The universal gravitational constant is related to the attractive gravitational force between two bodies separated by a distance r. The acceleration due to gravity on earth is the acceleration experienced by anybody during free fall due to the attractive gravitational force of the earth's surface. It is not a universal constant. On earth, it is usually taken to be \[9.8{\rm{ }}m{s^{ - 2}}\].
Formula used:
Gravitational Force,
\[F = GMm/{r^2}\]
Where G = universal gravitational constant.
M= mass of the planet (earth)
m = mass of the lighter object
r = distance between the two objects
Acceleration due to gravity,
\[g = GM/{r^2}\]
where M= mass of the planet (earth)
r = radius of the planet
Complete step by step solution:
Given: mass of Jupiter = 319 times the mass of earth
Radius of Jupiter = 11.2 times the radius of earth
From Newton’s law of gravitation,
Force, \[F = GMm/{r^2}\]----- (1)
where G= universal gravitational constant = \[6.674 \times {10^{ - 11}}{m^3}k{g^{ - 1}}{s^{ - 2}}\]
Also, from Newton’s third law of motion,
\[F = mg\]------ (2)
where g = acceleration due to gravity on earth = \[9.8{\rm{ }}m{s^{ - 2}}\]
Equating (1) and (2)
\[g = GM/{r^2}\]------ (3)
Let \[\]\[M\], \[r\], \[{M_j}\] and \[{r_j}\] be masses and radii of earth and Jupiter respectively. Then according to the question,
\[{M_j} = 319M\]--(4) and \[{r_j} = 11.2r\]--- (5)
Using equation (3) to calculate \[{g_j}\]= acceleration due to gravity on Jupiter,
\[{g_j} = G{M_j}/{r^2}_j\]---- (6)
Substituting equations (4) and (5) in (6), we get,
\[{g_j} = G \times 319M/{(11.2r)^2}\]
\[\Rightarrow{g_j} = 2.54g\]
\[\Rightarrow {g_j} = 2.54 \times 9.8\]
\[\therefore {g_j} = 24.58\,m{s^{ - 2}}\]
Hence the acceleration due to gravity on Jupiter is \[{g_j} = 24.58\,m{s^{ - 2}}\].
Note: Although acceleration due to gravity is a constant, it is not a universal constant like universal gravitational constant, G. It varies on earth with change in reference surface such as when measured on a mountain or in the depths of water bodies like seas and oceans.
Formula used:
Gravitational Force,
\[F = GMm/{r^2}\]
Where G = universal gravitational constant.
M= mass of the planet (earth)
m = mass of the lighter object
r = distance between the two objects
Acceleration due to gravity,
\[g = GM/{r^2}\]
where M= mass of the planet (earth)
r = radius of the planet
Complete step by step solution:
Given: mass of Jupiter = 319 times the mass of earth
Radius of Jupiter = 11.2 times the radius of earth
From Newton’s law of gravitation,
Force, \[F = GMm/{r^2}\]----- (1)
where G= universal gravitational constant = \[6.674 \times {10^{ - 11}}{m^3}k{g^{ - 1}}{s^{ - 2}}\]
Also, from Newton’s third law of motion,
\[F = mg\]------ (2)
where g = acceleration due to gravity on earth = \[9.8{\rm{ }}m{s^{ - 2}}\]
Equating (1) and (2)
\[g = GM/{r^2}\]------ (3)
Let \[\]\[M\], \[r\], \[{M_j}\] and \[{r_j}\] be masses and radii of earth and Jupiter respectively. Then according to the question,
\[{M_j} = 319M\]--(4) and \[{r_j} = 11.2r\]--- (5)
Using equation (3) to calculate \[{g_j}\]= acceleration due to gravity on Jupiter,
\[{g_j} = G{M_j}/{r^2}_j\]---- (6)
Substituting equations (4) and (5) in (6), we get,
\[{g_j} = G \times 319M/{(11.2r)^2}\]
\[\Rightarrow{g_j} = 2.54g\]
\[\Rightarrow {g_j} = 2.54 \times 9.8\]
\[\therefore {g_j} = 24.58\,m{s^{ - 2}}\]
Hence the acceleration due to gravity on Jupiter is \[{g_j} = 24.58\,m{s^{ - 2}}\].
Note: Although acceleration due to gravity is a constant, it is not a universal constant like universal gravitational constant, G. It varies on earth with change in reference surface such as when measured on a mountain or in the depths of water bodies like seas and oceans.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs