Answer
Verified
113.4k+ views
Hint: The kinetic energy, vs frequency equation can be compared to the equation of a straight line. Intensity of radiation is independent of the frequency and vice versa.
Formula used: In this solution we will be using the following formulae;
\[KE = hf - W\] where \[KE\] is the kinetic energy of the electrons ejected, \[f\] is the frequency of the radiation, \[h\] is the Planck’s constant and \[W\] is called the work function of the metal.
Complete Step-by-Step Solution:
It was observed, in the late 19th century, that when light or any radiation is shone on certain metals, electrons are emitted from the metal. However, the behaviour of these phenomenons at the time did not occur according to the predictions of the theory at the time. Einstein came forth and gave a correct theory which can be summarized according to the equation
\[KE = hf - W\]where \[KE\] is the kinetic energy of the electrons ejected, \[f\] is the frequency of the radiation, \[h\] is the Planck’s constant and \[W\] is called the work function of the metal. The work function is a constant of the metal used.
Hence, if we compare this equation to that of the equation of a straight line given as
\[y = mx + c\]
We can see that the slope \[m\] is equal to \[h\] in the Einstein equation.
Hence, the slope is independent of all intensity or anything but a constant for all metals.
Hence, the correct option is C
Note: Alternatively, without the use of the equation. With the knowledge that the frequency is proportion to the kinetic energy, and that the frequency of radiation has no hidden relationship with the metal nor with the intensity of the radiation, we can conclude, at least, that the kinetic energy is independent of intensity and nature of metal used.
Formula used: In this solution we will be using the following formulae;
\[KE = hf - W\] where \[KE\] is the kinetic energy of the electrons ejected, \[f\] is the frequency of the radiation, \[h\] is the Planck’s constant and \[W\] is called the work function of the metal.
Complete Step-by-Step Solution:
It was observed, in the late 19th century, that when light or any radiation is shone on certain metals, electrons are emitted from the metal. However, the behaviour of these phenomenons at the time did not occur according to the predictions of the theory at the time. Einstein came forth and gave a correct theory which can be summarized according to the equation
\[KE = hf - W\]where \[KE\] is the kinetic energy of the electrons ejected, \[f\] is the frequency of the radiation, \[h\] is the Planck’s constant and \[W\] is called the work function of the metal. The work function is a constant of the metal used.
Hence, if we compare this equation to that of the equation of a straight line given as
\[y = mx + c\]
We can see that the slope \[m\] is equal to \[h\] in the Einstein equation.
Hence, the slope is independent of all intensity or anything but a constant for all metals.
Hence, the correct option is C
Note: Alternatively, without the use of the equation. With the knowledge that the frequency is proportion to the kinetic energy, and that the frequency of radiation has no hidden relationship with the metal nor with the intensity of the radiation, we can conclude, at least, that the kinetic energy is independent of intensity and nature of metal used.
Recently Updated Pages
Updated JEE Main Syllabus 2025 - Subject-wise Syllabus and More
JEE Main 2025 Exam Date: Check Important Dates and Schedule
JEE Main Admit Card 2025 Release Date and Time with Steps to Download
JEE Main 2025 City Intimation Slip: Downloading Link and Exam Centres
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking