
According to Einstein’s photoelectric equation, the plot of the kinetic energy of the emitted photoelectrons from a metal vs. the frequency, of the incident radiation gives a straight line whose slope:
(A) Depends on the nature of the metal used
(B) Depends on the intensity of the radiation
(C) Depends both on the intensity of the radiation and the metal used.
(D) Is the same for all metals and independent of the intensity of the radiation
Answer
134.4k+ views
Hint: The kinetic energy, vs frequency equation can be compared to the equation of a straight line. Intensity of radiation is independent of the frequency and vice versa.
Formula used: In this solution we will be using the following formulae;
\[KE = hf - W\] where \[KE\] is the kinetic energy of the electrons ejected, \[f\] is the frequency of the radiation, \[h\] is the Planck’s constant and \[W\] is called the work function of the metal.
Complete Step-by-Step Solution:
It was observed, in the late 19th century, that when light or any radiation is shone on certain metals, electrons are emitted from the metal. However, the behaviour of these phenomenons at the time did not occur according to the predictions of the theory at the time. Einstein came forth and gave a correct theory which can be summarized according to the equation
\[KE = hf - W\]where \[KE\] is the kinetic energy of the electrons ejected, \[f\] is the frequency of the radiation, \[h\] is the Planck’s constant and \[W\] is called the work function of the metal. The work function is a constant of the metal used.
Hence, if we compare this equation to that of the equation of a straight line given as
\[y = mx + c\]
We can see that the slope \[m\] is equal to \[h\] in the Einstein equation.
Hence, the slope is independent of all intensity or anything but a constant for all metals.
Hence, the correct option is C
Note: Alternatively, without the use of the equation. With the knowledge that the frequency is proportion to the kinetic energy, and that the frequency of radiation has no hidden relationship with the metal nor with the intensity of the radiation, we can conclude, at least, that the kinetic energy is independent of intensity and nature of metal used.
Formula used: In this solution we will be using the following formulae;
\[KE = hf - W\] where \[KE\] is the kinetic energy of the electrons ejected, \[f\] is the frequency of the radiation, \[h\] is the Planck’s constant and \[W\] is called the work function of the metal.
Complete Step-by-Step Solution:
It was observed, in the late 19th century, that when light or any radiation is shone on certain metals, electrons are emitted from the metal. However, the behaviour of these phenomenons at the time did not occur according to the predictions of the theory at the time. Einstein came forth and gave a correct theory which can be summarized according to the equation
\[KE = hf - W\]where \[KE\] is the kinetic energy of the electrons ejected, \[f\] is the frequency of the radiation, \[h\] is the Planck’s constant and \[W\] is called the work function of the metal. The work function is a constant of the metal used.
Hence, if we compare this equation to that of the equation of a straight line given as
\[y = mx + c\]
We can see that the slope \[m\] is equal to \[h\] in the Einstein equation.
Hence, the slope is independent of all intensity or anything but a constant for all metals.
Hence, the correct option is C
Note: Alternatively, without the use of the equation. With the knowledge that the frequency is proportion to the kinetic energy, and that the frequency of radiation has no hidden relationship with the metal nor with the intensity of the radiation, we can conclude, at least, that the kinetic energy is independent of intensity and nature of metal used.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage
