Answer
Verified
112.8k+ views
Hint: The theory of work and kinetic energy (also known as the work-energy theorem) states that the work performed by the sum of all forces acting on a particle equals the difference in the kinetic energy of the particle. This description can be generalised to solid bodies by describing the work of the torque and rotational kinetic energy.
Complete step by step solution:
The work / energy hypothesis describes the principle that network work – the entire work carried out by all the forces together – on a single object is the same as change in the object's kinetic energy. Since eliminating the net force (no further work is performed), the cumulative energy of the object is changed due to the work done.
Work moves energy from place to place or from form to form. The work will alter the potential energy in a mechanical device, the heat energy in a thermal system, or electrical energy in an electrical device, in more general systems than those described here.
The kinetic energy generated due to velocity will be equal to the potential energy generated in the lobe.
Kinetic energy due to velocity $v$ will be,
$\dfrac {1} {2} {\rho _ {air}} {v^2} $
${\rho _ {air}} $ is the density of air.
$v$ is the velocity.
Potential energy in the lobe is,
${\rho _w} g {h_w} $
Where, the density of the water is ${\rho _w} $, $g$ is acceleration due to gravity, ${h_w} $ is the height of water in the lobe.
Now, according to work energy theorem,
$\dfrac {1} {2} {\rho _ {air}} {v^2} = {\rho _w} g {h_w} $
$ \Rightarrow v = \sqrt {\dfrac{{2{\rho _w} g {h_w}}} {{{\rho _ {air}}}}} $
$ \Rightarrow v = \sqrt {\dfrac{{2 \times {{10} ^3} \times 10 \times {{10} ^ {- 2}}}} {{1.3}}} $
$v = 12.4m{s^ {- 1}} $
The speed of air is $12.4m{s^ {- 1}} $.
Note: The loss in kinetic energy, on the other hand, results through an equal number of negative work carried out by the resulting force. Therefore, if the network is positive, the kinetic energy of the particle will increase by the work. If the network work carried out is negative, the cinematic energy of the particles lowers the workload. Work is the energy associated with force action, and work then has the spatial and unitary components of energy.
Complete step by step solution:
The work / energy hypothesis describes the principle that network work – the entire work carried out by all the forces together – on a single object is the same as change in the object's kinetic energy. Since eliminating the net force (no further work is performed), the cumulative energy of the object is changed due to the work done.
Work moves energy from place to place or from form to form. The work will alter the potential energy in a mechanical device, the heat energy in a thermal system, or electrical energy in an electrical device, in more general systems than those described here.
The kinetic energy generated due to velocity will be equal to the potential energy generated in the lobe.
Kinetic energy due to velocity $v$ will be,
$\dfrac {1} {2} {\rho _ {air}} {v^2} $
${\rho _ {air}} $ is the density of air.
$v$ is the velocity.
Potential energy in the lobe is,
${\rho _w} g {h_w} $
Where, the density of the water is ${\rho _w} $, $g$ is acceleration due to gravity, ${h_w} $ is the height of water in the lobe.
Now, according to work energy theorem,
$\dfrac {1} {2} {\rho _ {air}} {v^2} = {\rho _w} g {h_w} $
$ \Rightarrow v = \sqrt {\dfrac{{2{\rho _w} g {h_w}}} {{{\rho _ {air}}}}} $
$ \Rightarrow v = \sqrt {\dfrac{{2 \times {{10} ^3} \times 10 \times {{10} ^ {- 2}}}} {{1.3}}} $
$v = 12.4m{s^ {- 1}} $
The speed of air is $12.4m{s^ {- 1}} $.
Note: The loss in kinetic energy, on the other hand, results through an equal number of negative work carried out by the resulting force. Therefore, if the network is positive, the kinetic energy of the particle will increase by the work. If the network work carried out is negative, the cinematic energy of the particles lowers the workload. Work is the energy associated with force action, and work then has the spatial and unitary components of energy.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line