
An 8N force acts on a rectangular conductor 20cm long placed perpendicular to a magnetic field. Determine the magnetic field induction if the current in the conductor is 40A.
Answer
232.8k+ views
Hint: Here a current carrying wire or conductor when placed in a magnetic field experiences a force. If the direction of the magnetic field and the direction of the wire or conductor are in 90 degrees with each other then the force that will be acting on the conductor would be perpendicular to both the magnetic field and the current carrying conductor. It can be determined using Fleming’s Left Hand Rule. Here apply the formula $F = BiL\sin \theta $; where F = Force; B = Magnetic Field Induction; i = current; L = Length of the conductor.
Complete step by step solution:
Put the known value in the formula and find B.
$F = BiL\sin \theta $
Take B to LHS and put rest of the variables in RHS
$\Rightarrow$ $\dfrac{F}{{iL\sin \theta }} = B$;
Put the given value in the above equation and solve,
$\Rightarrow$ $\dfrac{8}{{40 \times 0.2 \times \sin 90}} = B$; ….(Here $L = 20cm = 0.2m$)
Do the necessary mathematical calculation and solve for “B”.
$\Rightarrow$ $B = \dfrac{8}{8}$
The final value of B is:
$\Rightarrow$ $B = 1$ $Tesla$
The magnetic field induction is $B = 1$ $Tesla$.
Note: Here make sure to apply the correct formula for force on current carrying wire placed in a magnetic field. Do not use the formula $F = qvb\sin \theta $. Here we have been given the value of length of the wire and current in the wire. We need to use a formula ($F = BiL\sin \theta $) that relates all the given variables together.
Complete step by step solution:
Put the known value in the formula and find B.
$F = BiL\sin \theta $
Take B to LHS and put rest of the variables in RHS
$\Rightarrow$ $\dfrac{F}{{iL\sin \theta }} = B$;
Put the given value in the above equation and solve,
$\Rightarrow$ $\dfrac{8}{{40 \times 0.2 \times \sin 90}} = B$; ….(Here $L = 20cm = 0.2m$)
Do the necessary mathematical calculation and solve for “B”.
$\Rightarrow$ $B = \dfrac{8}{8}$
The final value of B is:
$\Rightarrow$ $B = 1$ $Tesla$
The magnetic field induction is $B = 1$ $Tesla$.
Note: Here make sure to apply the correct formula for force on current carrying wire placed in a magnetic field. Do not use the formula $F = qvb\sin \theta $. Here we have been given the value of length of the wire and current in the wire. We need to use a formula ($F = BiL\sin \theta $) that relates all the given variables together.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Uniform Acceleration in Physics

Why does capacitor block DC and allow AC class 12 physics JEE_Main

Understanding How a Current Loop Acts as a Magnetic Dipole

Step-by-Step Guide to Young’s Double Slit Experiment Derivation

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Electric field due to uniformly charged sphere class 12 physics JEE_Main

