Answer
Verified
109.2k+ views
Hint: Here a current carrying wire or conductor when placed in a magnetic field experiences a force. If the direction of the magnetic field and the direction of the wire or conductor are in 90 degrees with each other then the force that will be acting on the conductor would be perpendicular to both the magnetic field and the current carrying conductor. It can be determined using Fleming’s Left Hand Rule. Here apply the formula $F = BiL\sin \theta $; where F = Force; B = Magnetic Field Induction; i = current; L = Length of the conductor.
Complete step by step solution:
Put the known value in the formula and find B.
$F = BiL\sin \theta $
Take B to LHS and put rest of the variables in RHS
$\Rightarrow$ $\dfrac{F}{{iL\sin \theta }} = B$;
Put the given value in the above equation and solve,
$\Rightarrow$ $\dfrac{8}{{40 \times 0.2 \times \sin 90}} = B$; ….(Here $L = 20cm = 0.2m$)
Do the necessary mathematical calculation and solve for “B”.
$\Rightarrow$ $B = \dfrac{8}{8}$
The final value of B is:
$\Rightarrow$ $B = 1$ $Tesla$
The magnetic field induction is $B = 1$ $Tesla$.
Note: Here make sure to apply the correct formula for force on current carrying wire placed in a magnetic field. Do not use the formula $F = qvb\sin \theta $. Here we have been given the value of length of the wire and current in the wire. We need to use a formula ($F = BiL\sin \theta $) that relates all the given variables together.
Complete step by step solution:
Put the known value in the formula and find B.
$F = BiL\sin \theta $
Take B to LHS and put rest of the variables in RHS
$\Rightarrow$ $\dfrac{F}{{iL\sin \theta }} = B$;
Put the given value in the above equation and solve,
$\Rightarrow$ $\dfrac{8}{{40 \times 0.2 \times \sin 90}} = B$; ….(Here $L = 20cm = 0.2m$)
Do the necessary mathematical calculation and solve for “B”.
$\Rightarrow$ $B = \dfrac{8}{8}$
The final value of B is:
$\Rightarrow$ $B = 1$ $Tesla$
The magnetic field induction is $B = 1$ $Tesla$.
Note: Here make sure to apply the correct formula for force on current carrying wire placed in a magnetic field. Do not use the formula $F = qvb\sin \theta $. Here we have been given the value of length of the wire and current in the wire. We need to use a formula ($F = BiL\sin \theta $) that relates all the given variables together.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main