
An $\alpha $ particle and a proton are accelerated from rest by the same potential. Find the ratio of their de-Broglie wavelength.
Answer
418.9k+ views
- Hint: First, we will find out the kinetic energies of both the $\alpha $ and the proton respectively with the formula $KE = \dfrac{1}{2}m{v^2}$. Then we will solve the equations further and find out the equation for momentums of both the particles. Refer to the solution below.
Formula used: $KE = \dfrac{1}{2}m{v^2}$, $p = mv$, $\lambda = \dfrac{h}{p}$.
Complete step-by-step solution:
Let the mass of $\alpha $particle be ${m_\alpha }$.
Let the mass of the proton be ${m_p}$.
Let the velocity of $\alpha $ particle be ${v_\alpha }$.
Let the velocity of the proton be ${v_p}$.
Now, as we know the formula for kinetic energy is $KE = \dfrac{1}{2}m{v^2}$.
Kinetic energy of $\alpha $ particle will be-
$ \Rightarrow K{E_\alpha } = \dfrac{1}{2}{m_\alpha }{v_\alpha }^2$
Multiplying the numerator and denominator by ${m_\alpha }$, we get-
$ \Rightarrow K{E_\alpha } = {\dfrac{{\left( {{m_\alpha }{v_\alpha }} \right)}}{{2{m_\alpha }}}^2}$
As we know that the formula for momentum is $p = mv$. So, from the above equation we get-
$
\Rightarrow K{E_\alpha } = {\dfrac{{\left( {{p_\alpha }} \right)}}{{2{m_\alpha }}}^2} \\
\\
\Rightarrow {p_\alpha }^2 = 2{m_\alpha }{\left( {KE} \right)_\alpha } \\
\\
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }{{\left( {KE} \right)}_\alpha }} \\
$
Kinetic energy of proton will be-
$ \Rightarrow K{E_p} = \dfrac{1}{2}{m_p}{v_p}^2$
Multiplying the numerator and denominator by ${m_p}$, we get-
$ \Rightarrow K{E_p} = {\dfrac{{\left( {{m_p}{v_p}} \right)}}{{2{m_p}}}^2}$
As we know that the formula for momentum is $p = mv$. So, from the above equation we get-
$
\Rightarrow K{E_p} = {\dfrac{{\left( {{p_p}} \right)}}{{2{m_p}}}^2} \\
\\
\Rightarrow {p_p}^2 = 2{m_p}{\left( {KE} \right)_p} \\
\\
\Rightarrow {p_p} = \sqrt {2{m_p}{{\left( {KE} \right)}_p}} \\
$
Now, the work done in accelerating the proton and the $\alpha $ particle will be equal to the kinetic energy acquired. As we know, $W = qV$. Potential difference is the same in both cases. So-
Kinetic energy of $\alpha $ particle in terms of charge and potential difference-
$ \Rightarrow K{E_\alpha } = {q_\alpha }V$
Kinetic energy of $p$ particle in terms of charge and potential difference-
$ \Rightarrow K{E_p} = {q_p}V$
Putting the above values of kinetic energy into the values of momentums, we get-
For $\alpha $ particle-
$
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }{{\left( {KE} \right)}_\alpha }} \\
\\
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} \\
$
For proton-
$
\Rightarrow {p_p} = \sqrt {2{m_p}{{\left( {KE} \right)}_p}} \\
\\
\Rightarrow {p_p} = \sqrt {2{m_p}\left( {{q_p}V} \right)} \\
$
The formula for de-Broglie wavelength is $\lambda = \dfrac{h}{p}$. Putting the values of momentum from above one by one, we get-
For $\alpha $ particle-
$ \Rightarrow {\lambda _\alpha } = \dfrac{h}{{\sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }}$
For proton-
$ \Rightarrow {\lambda _p} = \dfrac{h}{{\sqrt {2{m_p}\left( {{q_p}V} \right)} }}$
Finding their ratios, we will have-
$
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\dfrac{h}{{\sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }}}}{{\dfrac{h}{{\sqrt {2{m_p}\left( {{q_p}V} \right)} }}}} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{h \times \sqrt {2{m_p}\left( {{q_p}V} \right)} }}{{h \times \sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {{m_\alpha }{q_\alpha }} }} \\
$
As we know that the mass of $\alpha $ particle is 4 times the mass of proton and the charge of $\alpha $ particle is 2 times the charge of proton, we get-
$
\Rightarrow {m_\alpha } = 4{m_p} \\
\\
\Rightarrow {q_\alpha } = 2{q_p} \\
$
Putting the values in the above ratio, we will have-
$
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {{m_\alpha }{q_\alpha }} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {4{m_p}2{q_p}} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \sqrt {\dfrac{1}{4} \times \dfrac{1}{2}} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{1}{{2\sqrt 2 }} \\
$
Thus, the ratio of ${\lambda _\alpha }:{\lambda _p} = 1:2\sqrt 2 $.
Note: It is said that matter has a dual nature of wave-particles. de Broglie waves, named after the pioneer Louis de Broglie, is the property of a material object that differs in time or space while acting like waves. It is likewise called matter-waves. It holds extraordinary likeness to the dual nature of light which acts as particle and wave, which has been demonstrated experimentally.
Formula used: $KE = \dfrac{1}{2}m{v^2}$, $p = mv$, $\lambda = \dfrac{h}{p}$.
Complete step-by-step solution:
Let the mass of $\alpha $particle be ${m_\alpha }$.
Let the mass of the proton be ${m_p}$.
Let the velocity of $\alpha $ particle be ${v_\alpha }$.
Let the velocity of the proton be ${v_p}$.
Now, as we know the formula for kinetic energy is $KE = \dfrac{1}{2}m{v^2}$.
Kinetic energy of $\alpha $ particle will be-
$ \Rightarrow K{E_\alpha } = \dfrac{1}{2}{m_\alpha }{v_\alpha }^2$
Multiplying the numerator and denominator by ${m_\alpha }$, we get-
$ \Rightarrow K{E_\alpha } = {\dfrac{{\left( {{m_\alpha }{v_\alpha }} \right)}}{{2{m_\alpha }}}^2}$
As we know that the formula for momentum is $p = mv$. So, from the above equation we get-
$
\Rightarrow K{E_\alpha } = {\dfrac{{\left( {{p_\alpha }} \right)}}{{2{m_\alpha }}}^2} \\
\\
\Rightarrow {p_\alpha }^2 = 2{m_\alpha }{\left( {KE} \right)_\alpha } \\
\\
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }{{\left( {KE} \right)}_\alpha }} \\
$
Kinetic energy of proton will be-
$ \Rightarrow K{E_p} = \dfrac{1}{2}{m_p}{v_p}^2$
Multiplying the numerator and denominator by ${m_p}$, we get-
$ \Rightarrow K{E_p} = {\dfrac{{\left( {{m_p}{v_p}} \right)}}{{2{m_p}}}^2}$
As we know that the formula for momentum is $p = mv$. So, from the above equation we get-
$
\Rightarrow K{E_p} = {\dfrac{{\left( {{p_p}} \right)}}{{2{m_p}}}^2} \\
\\
\Rightarrow {p_p}^2 = 2{m_p}{\left( {KE} \right)_p} \\
\\
\Rightarrow {p_p} = \sqrt {2{m_p}{{\left( {KE} \right)}_p}} \\
$
Now, the work done in accelerating the proton and the $\alpha $ particle will be equal to the kinetic energy acquired. As we know, $W = qV$. Potential difference is the same in both cases. So-
Kinetic energy of $\alpha $ particle in terms of charge and potential difference-
$ \Rightarrow K{E_\alpha } = {q_\alpha }V$
Kinetic energy of $p$ particle in terms of charge and potential difference-
$ \Rightarrow K{E_p} = {q_p}V$
Putting the above values of kinetic energy into the values of momentums, we get-
For $\alpha $ particle-
$
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }{{\left( {KE} \right)}_\alpha }} \\
\\
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} \\
$
For proton-
$
\Rightarrow {p_p} = \sqrt {2{m_p}{{\left( {KE} \right)}_p}} \\
\\
\Rightarrow {p_p} = \sqrt {2{m_p}\left( {{q_p}V} \right)} \\
$
The formula for de-Broglie wavelength is $\lambda = \dfrac{h}{p}$. Putting the values of momentum from above one by one, we get-
For $\alpha $ particle-
$ \Rightarrow {\lambda _\alpha } = \dfrac{h}{{\sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }}$
For proton-
$ \Rightarrow {\lambda _p} = \dfrac{h}{{\sqrt {2{m_p}\left( {{q_p}V} \right)} }}$
Finding their ratios, we will have-
$
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\dfrac{h}{{\sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }}}}{{\dfrac{h}{{\sqrt {2{m_p}\left( {{q_p}V} \right)} }}}} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{h \times \sqrt {2{m_p}\left( {{q_p}V} \right)} }}{{h \times \sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {{m_\alpha }{q_\alpha }} }} \\
$
As we know that the mass of $\alpha $ particle is 4 times the mass of proton and the charge of $\alpha $ particle is 2 times the charge of proton, we get-
$
\Rightarrow {m_\alpha } = 4{m_p} \\
\\
\Rightarrow {q_\alpha } = 2{q_p} \\
$
Putting the values in the above ratio, we will have-
$
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {{m_\alpha }{q_\alpha }} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {4{m_p}2{q_p}} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \sqrt {\dfrac{1}{4} \times \dfrac{1}{2}} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{1}{{2\sqrt 2 }} \\
$
Thus, the ratio of ${\lambda _\alpha }:{\lambda _p} = 1:2\sqrt 2 $.
Note: It is said that matter has a dual nature of wave-particles. de Broglie waves, named after the pioneer Louis de Broglie, is the property of a material object that differs in time or space while acting like waves. It is likewise called matter-waves. It holds extraordinary likeness to the dual nature of light which acts as particle and wave, which has been demonstrated experimentally.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

In Bohrs model of the hydrogen atom the radius of the class 12 physics JEE_Main

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Other Pages
JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download
