An ammeter having resistance ${R_0}$ shows full deflection when the current $I$ flow from it. What resistance should be connected to it in series so that it shows deflection $\dfrac{I}{n}$ when the same current flows.
A) $\dfrac{{{R_0}}}{n}$
B) ${R_0}\left( {n - 1} \right)$
C) $\dfrac{{{R_0}}}{{n + 1}}$
D) None of these
Answer
Verified
116.4k+ views
Hint: To solve this question, we have to understand the arrangement in which a galvanometer can be converted to an ammeter. To convert a galvanometer to ammeter, a resistor of very low resistance called shunt resistance should be connected in parallel to the galvanometer.
Complete step by step solution:
An ammeter is a device used to measure the magnitude of current flowing through the wire. It is connected in the series with the branch in which current has to be measured.
An ammeter can be constructed from a galvanometer by connecting a low resistance in parallel to the galvanometer as shown:
If G is the resistance of the galvanometer, $I$ is the current to be measured and ${I_g}$ is the current flowing through the galvanometer, the value of shunt resistance connected to the galvanometer is given by –
$S = \dfrac{{G{I_g}}}{{I - {I_g}}}$
Thus, the complete setup can be summarised as the schematic figure of an ammeter with a resistance which is given here, as ${R_0}$ with the current I flowing through the ammeter.
Let R be another resistance connected in series with ${R_0}$ such that the current flowing through the ammeter shall be $\dfrac{I}{n}$ as shown:
In both the cases, the voltage drop across the ammeter remains constant since the current flowing is the same in both the cases.
Voltage drop in the first case: $V = I{R_0}$
Voltage drop in the second case: $V = \dfrac{I}{n}\left( {R + {R_0}} \right)$
Equating them, we get –
$I{R_0} = \dfrac{I}{n}\left( {R + {R_0}} \right)$
$ \Rightarrow {R_0} = \dfrac{{R + {R_0}}}{n}$
$ \Rightarrow n{R_0} = R + {R_0}$
$ \Rightarrow R = n{R_0} - {R_0}$
$ \Rightarrow R = {R_0}\left( {n - 1} \right)$
Hence, the correct option is Option B.
Note: The students must note the fact that in an ammeter, the shunt resistor used, has a very low value, usually in micro- or milli- ohms. If you encounter any problem on calculating the shunt resistance in an ammeter and you do not get a low resistance, it is sure that the solution is headed in the wrong direction.
Complete step by step solution:
An ammeter is a device used to measure the magnitude of current flowing through the wire. It is connected in the series with the branch in which current has to be measured.
An ammeter can be constructed from a galvanometer by connecting a low resistance in parallel to the galvanometer as shown:
If G is the resistance of the galvanometer, $I$ is the current to be measured and ${I_g}$ is the current flowing through the galvanometer, the value of shunt resistance connected to the galvanometer is given by –
$S = \dfrac{{G{I_g}}}{{I - {I_g}}}$
Thus, the complete setup can be summarised as the schematic figure of an ammeter with a resistance which is given here, as ${R_0}$ with the current I flowing through the ammeter.
Let R be another resistance connected in series with ${R_0}$ such that the current flowing through the ammeter shall be $\dfrac{I}{n}$ as shown:
In both the cases, the voltage drop across the ammeter remains constant since the current flowing is the same in both the cases.
Voltage drop in the first case: $V = I{R_0}$
Voltage drop in the second case: $V = \dfrac{I}{n}\left( {R + {R_0}} \right)$
Equating them, we get –
$I{R_0} = \dfrac{I}{n}\left( {R + {R_0}} \right)$
$ \Rightarrow {R_0} = \dfrac{{R + {R_0}}}{n}$
$ \Rightarrow n{R_0} = R + {R_0}$
$ \Rightarrow R = n{R_0} - {R_0}$
$ \Rightarrow R = {R_0}\left( {n - 1} \right)$
Hence, the correct option is Option B.
Note: The students must note the fact that in an ammeter, the shunt resistor used, has a very low value, usually in micro- or milli- ohms. If you encounter any problem on calculating the shunt resistance in an ammeter and you do not get a low resistance, it is sure that the solution is headed in the wrong direction.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025