Answer
Verified
112.8k+ views
Hint: First find the mass of the unit cell using formula-
Mass of a unit cell = $\dfrac{{ZM}}{N}$ where Z is the effective number of atoms in the unit cell, M is molar mass; N is the Avogadro number or number of atoms. Then calculate the density by putting the given values in the following formula-
Density= $\dfrac{{{\text{Mass of unit cell}}}}{{{\text{Volume of unit cell}}}}$
Step-by-Step Solution-
Given, Molar Mass M= $200$g
Number of atoms N= $24 \times {10^{23}}$
Edge length a= $200$pm
Element having FCC structure has total $4$ atoms in a unit cell. The effective number of atoms in unit cell Z= $4$
So the mass of the unit cell is equal to the mass of the $4$atoms.
Then we know that Mass of a unit cell is given by= $\dfrac{{ZM}}{N}$ where Z is the effective number of atoms in unit cell, M is molar mass, N is the Avogadro number or number of atoms.
On putting the values of the formula we get,
Mass of unit cell= \[4 \times \dfrac{{200}}{{24 \times {{10}^{23}}}}\]
On solving we get,
Mass of unit cell= $3.33 \times {10^{ - 22}}$ g--- (i)
Now the volume of the unit cell= \[{\left( a \right)^3}\]
On putting the values we get,
Volume of unit cell= ${\left( {200 \times {{10}^{ - 10}}} \right)^3}$ $c{m^3}$
Then on solving we get,
Volume of unit cell= $8 \times {10^{ - 24}}$ $c{m^3}$--- (ii)
Now we have to calculate density
And we know that Density= $\dfrac{{{\text{Mass of unit cell}}}}{{{\text{Volume of unit cell}}}}$
On putting the values from eq. (i) and (ii) in the formula we get,
Density= $\dfrac{{3.33 \times {{10}^{ - 22}}}}{{8 \times {{10}^{ - 24}}}}$
On solving we get,
Density = $0.416 \times {10^2}$
Density= $41.6gc{m^{ - 3}}$
Answer-Hence the correct answer is B.
Note: In FCC structure, following points are to be noted-
- The atoms in a unit cell are all present in the corners of the crystal lattice.
- One atom is present at the centre of every face of the cube
- This face centered atom is shared between two adjacent units’ cells in the crystal lattice.
- Only half of each atom belongs to the unit cell.
Mass of a unit cell = $\dfrac{{ZM}}{N}$ where Z is the effective number of atoms in the unit cell, M is molar mass; N is the Avogadro number or number of atoms. Then calculate the density by putting the given values in the following formula-
Density= $\dfrac{{{\text{Mass of unit cell}}}}{{{\text{Volume of unit cell}}}}$
Step-by-Step Solution-
Given, Molar Mass M= $200$g
Number of atoms N= $24 \times {10^{23}}$
Edge length a= $200$pm
Element having FCC structure has total $4$ atoms in a unit cell. The effective number of atoms in unit cell Z= $4$
So the mass of the unit cell is equal to the mass of the $4$atoms.
Then we know that Mass of a unit cell is given by= $\dfrac{{ZM}}{N}$ where Z is the effective number of atoms in unit cell, M is molar mass, N is the Avogadro number or number of atoms.
On putting the values of the formula we get,
Mass of unit cell= \[4 \times \dfrac{{200}}{{24 \times {{10}^{23}}}}\]
On solving we get,
Mass of unit cell= $3.33 \times {10^{ - 22}}$ g--- (i)
Now the volume of the unit cell= \[{\left( a \right)^3}\]
On putting the values we get,
Volume of unit cell= ${\left( {200 \times {{10}^{ - 10}}} \right)^3}$ $c{m^3}$
Then on solving we get,
Volume of unit cell= $8 \times {10^{ - 24}}$ $c{m^3}$--- (ii)
Now we have to calculate density
And we know that Density= $\dfrac{{{\text{Mass of unit cell}}}}{{{\text{Volume of unit cell}}}}$
On putting the values from eq. (i) and (ii) in the formula we get,
Density= $\dfrac{{3.33 \times {{10}^{ - 22}}}}{{8 \times {{10}^{ - 24}}}}$
On solving we get,
Density = $0.416 \times {10^2}$
Density= $41.6gc{m^{ - 3}}$
Answer-Hence the correct answer is B.
Note: In FCC structure, following points are to be noted-
- The atoms in a unit cell are all present in the corners of the crystal lattice.
- One atom is present at the centre of every face of the cube
- This face centered atom is shared between two adjacent units’ cells in the crystal lattice.
- Only half of each atom belongs to the unit cell.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main Chemistry Question Paper PDF Download with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
Average and RMS Value for JEE Main
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Displacement-Time Graph and Velocity-Time Graph for JEE
Clemmenson and Wolff Kishner Reductions for JEE
Semicircular Ring - Centre of Mass and Its Application for JEE
Oxidation state of S in H2S2O8 is A 6 B 7 C +8 D 0 class 12 chemistry JEE_Main
Other Pages
Biomolecules Class 12 Notes: CBSE Chemistry Chapter 10
NCERT Solutions for Class 12 Chemistry Chapter 3 Chemical Kinetics
Test for Phenolic Group
JEE Advanced 2025 Revision Notes for Practical Organic Chemistry
JEE Advanced 2025 Notes
The correct statement s from the following isare i class 12 chemistry JEE_Main