Answer
Verified
99.9k+ views
Hint: For solving this question we have to consider the concepts of heat engine, we have to use temperature in the standard unit of kelvin here. With the help of efficiency formula and work done by heat engine we will determine the value of X. Mainly, one must calculate efficiency and work done using efficiency.
Formula used:
1. \[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Where, \[\eta \] is the efficiency of the heat engine, \[{T_1}\] is the temperature at which it absorbs and \[{T_2}\] is the temperature at which it exhausts.
2. \[W = Q\eta \]
Where, \[W\]is work done by the heat engine and \[Q\]is the source heat in kilo calorie.
Complete answer:
Let us begin with the conversion of the temperature into standard units such as
\[{T_1} = {327^o}C = (327 + 273)K = 600K\]
\[{T_2} = {127^o}C = (127 + 273)K = 400K\]
So, let’s begin with calculating the efficiency of the heat engine, we have
\[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Let us substitute all the given values in the formula above, we get
\[ \Rightarrow \eta = 1 - \dfrac{{400K}}{{600K}}\]
\[ \Rightarrow \eta = 1 - \dfrac{2}{3} = 1 - 0.66 = 0.34\]
\[ \Rightarrow \eta = 0.34\]
Now, we have to find work for per kilo calorie, for that we have a formula for work done as below:
\[W = Q\eta \]
But, the source heat is \[Q = H = 1kcal\]
Also, remember that
\[1kcal = 4.2 \times {10^3}joule\]
Let us put all these values in the formula for work done for calculating total work.
\[ \Rightarrow W = 4.2 \times {10^3}joule \times 0.34\]
\[ \Rightarrow W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
But here work done is given in the form of \[X\]. Therefore,
\[X = W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
\[X = 1428J\]
Therefore, \[\dfrac{X}{5}\] is given by:
\[\dfrac{X}{5} = \dfrac{{1428J}}{5} = 285.6J\]
So, the answer is \[285.6J\].
Note: Here, the question is designed in such a way that there is just one concept that has been used to work efficiently. We have to recall all the important points from the heat engine and apply it over here.
Formula used:
1. \[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Where, \[\eta \] is the efficiency of the heat engine, \[{T_1}\] is the temperature at which it absorbs and \[{T_2}\] is the temperature at which it exhausts.
2. \[W = Q\eta \]
Where, \[W\]is work done by the heat engine and \[Q\]is the source heat in kilo calorie.
Complete answer:
Let us begin with the conversion of the temperature into standard units such as
\[{T_1} = {327^o}C = (327 + 273)K = 600K\]
\[{T_2} = {127^o}C = (127 + 273)K = 400K\]
So, let’s begin with calculating the efficiency of the heat engine, we have
\[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Let us substitute all the given values in the formula above, we get
\[ \Rightarrow \eta = 1 - \dfrac{{400K}}{{600K}}\]
\[ \Rightarrow \eta = 1 - \dfrac{2}{3} = 1 - 0.66 = 0.34\]
\[ \Rightarrow \eta = 0.34\]
Now, we have to find work for per kilo calorie, for that we have a formula for work done as below:
\[W = Q\eta \]
But, the source heat is \[Q = H = 1kcal\]
Also, remember that
\[1kcal = 4.2 \times {10^3}joule\]
Let us put all these values in the formula for work done for calculating total work.
\[ \Rightarrow W = 4.2 \times {10^3}joule \times 0.34\]
\[ \Rightarrow W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
But here work done is given in the form of \[X\]. Therefore,
\[X = W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
\[X = 1428J\]
Therefore, \[\dfrac{X}{5}\] is given by:
\[\dfrac{X}{5} = \dfrac{{1428J}}{5} = 285.6J\]
So, the answer is \[285.6J\].
Note: Here, the question is designed in such a way that there is just one concept that has been used to work efficiently. We have to recall all the important points from the heat engine and apply it over here.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main