Answer
Verified
112.8k+ views
Hint: In this question we have to do the analysis of pressure at the bottom of the flask. Doing so in the two given conditions will give us the new length of air columns.
Complete step by step solution:
Case 1: Before tilting;
Let the pressure of trapped air be ${P_1}$
This will be the pressure at the air-mercury interface.
Also atmospheric pressure ( ${P_0}$ ) = 76 cm of Hg.
Now at point on the air-mercury interface the pressure will be;
${P_0} + {P_{Hg}} = {P_1}$
${P_1} = 76 + 20 = 96$ (Equation: 1)
Now since air is an ideal gas it will have uniform pressure throughout it. So the pressure at the bottom of the flask will be ${P_1} = 96$
Let the area of the tube be A
So applying gas law we get;
${P_1}V = nRT$
Now we all know, $V = Al$
And $l = 43cm$
Thus $ \Rightarrow 96(A \times 43) = nRT$ (Equation: 2)
Now let us consider case 2 (after tilling);
The pressure at the air mercury interface ( ${P_2}$ ) is given by;
${P_2} = {P_0} + {P_{Hg}}\cos ({60^ \circ })$
Thus, $ \Rightarrow {P_2} = 79 + \dfrac{{20}}{2} = 86$
Now applying gas law we get;
${P_2}V = nRT$
$ \Rightarrow 86(Al') = nRT$ (Equation: 3) (here, $l'$ is the new length of air column)
From equation 2 and equation 3 we get;
$ \Rightarrow 96 \times 43A = 86Al'$
$\therefore l' = \dfrac{{96 \times 43}}{{86}} = 48cm$
Therefore, the new length is 48 cm.
Note:The volume is changing and hence the area is constant.
If the lid will be closed the volume won’t change and hence the area will change.
The pressure balancing should be done carefully.
Complete step by step solution:
Case 1: Before tilting;
Let the pressure of trapped air be ${P_1}$
This will be the pressure at the air-mercury interface.
Also atmospheric pressure ( ${P_0}$ ) = 76 cm of Hg.
Now at point on the air-mercury interface the pressure will be;
${P_0} + {P_{Hg}} = {P_1}$
${P_1} = 76 + 20 = 96$ (Equation: 1)
Now since air is an ideal gas it will have uniform pressure throughout it. So the pressure at the bottom of the flask will be ${P_1} = 96$
Let the area of the tube be A
So applying gas law we get;
${P_1}V = nRT$
Now we all know, $V = Al$
And $l = 43cm$
Thus $ \Rightarrow 96(A \times 43) = nRT$ (Equation: 2)
Now let us consider case 2 (after tilling);
The pressure at the air mercury interface ( ${P_2}$ ) is given by;
${P_2} = {P_0} + {P_{Hg}}\cos ({60^ \circ })$
Thus, $ \Rightarrow {P_2} = 79 + \dfrac{{20}}{2} = 86$
Now applying gas law we get;
${P_2}V = nRT$
$ \Rightarrow 86(Al') = nRT$ (Equation: 3) (here, $l'$ is the new length of air column)
From equation 2 and equation 3 we get;
$ \Rightarrow 96 \times 43A = 86Al'$
$\therefore l' = \dfrac{{96 \times 43}}{{86}} = 48cm$
Therefore, the new length is 48 cm.
Note:The volume is changing and hence the area is constant.
If the lid will be closed the volume won’t change and hence the area will change.
The pressure balancing should be done carefully.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line