Answer
Verified
114.6k+ views
Hint: Efficiency is the ratio of work done and heat taken to do that work. We have a direct equation for efficiency in terms of temperature of source and sink. Here temperature of sink and efficiency is given. We just need to substitute the values in the equation to found out the temperature of source.
Formula used:
Efficiency of heat engines,
$\eta =1-\dfrac{{{T}_{2}}}{{{T}_{1}}}$
Where temperature used is in kelvin scale.
Complete answer:
Heat engines convert heat to mechanical energy which is used to do mechanical work. There is a heat reservoir from which heat is taken and some work is done and remaining heat is transferred to a cold reservoir. Carnot engine is an ideal heat engine. Refrigerators and heat pumps are heat engines that work in reverse order.
Efficiency of a heat engine is the ratio of work done to that of heat taken to do that work. Usually, heat engines have 30% to 50% efficiency. It is impossible for a heat engine to achieve 100% efficiency.
Given, efficiency of heat engine,
$\eta =\frac{30}{100}$
and
${{T}_{2}}=77{}^\circ C=77+273=350K$
We have to find out what is $T_1$. On substituting the values, We get,
$\frac{30}{100}=1-\frac{350}{{{T}_{1}}}$
On further solving we get temperature as ${{T}_{1}}=500K=227{}^\circ C$
Therefore, the answer is option (B)
Note: Like all other questions here, sign conversion is important and also be careful that efficiency is given in percentage. This is a direct question but still while using the temperature connecting equation for efficiency remember that the temperature of sink is always less than that of source.
Formula used:
Efficiency of heat engines,
$\eta =1-\dfrac{{{T}_{2}}}{{{T}_{1}}}$
Where temperature used is in kelvin scale.
Complete answer:
Heat engines convert heat to mechanical energy which is used to do mechanical work. There is a heat reservoir from which heat is taken and some work is done and remaining heat is transferred to a cold reservoir. Carnot engine is an ideal heat engine. Refrigerators and heat pumps are heat engines that work in reverse order.
Efficiency of a heat engine is the ratio of work done to that of heat taken to do that work. Usually, heat engines have 30% to 50% efficiency. It is impossible for a heat engine to achieve 100% efficiency.
Given, efficiency of heat engine,
$\eta =\frac{30}{100}$
and
${{T}_{2}}=77{}^\circ C=77+273=350K$
We have to find out what is $T_1$. On substituting the values, We get,
$\frac{30}{100}=1-\frac{350}{{{T}_{1}}}$
On further solving we get temperature as ${{T}_{1}}=500K=227{}^\circ C$
Therefore, the answer is option (B)
Note: Like all other questions here, sign conversion is important and also be careful that efficiency is given in percentage. This is a direct question but still while using the temperature connecting equation for efficiency remember that the temperature of sink is always less than that of source.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs