![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
An ideal heat engine working between temperatures ${T_1}$ and ${T_2}$ has an efficiency $\eta $ . The new efficiency if the temperatures of both the source and sink are doubled, will be
A. $\dfrac{\eta }{2}$
B. $\eta $
C. $2\eta $
D. $3\eta $
Answer
124.5k+ views
Hint:This problem is based on Carnot Engine in thermodynamics, we know that all the parameters such as temperature, heat exchange, work done, etc., vary with the given conditions of the system and surroundings hence, analyze every option given and check which option seems to be more appropriate for the given problem.
Formula Used:
The efficiency of Carnot’s Heat Engine is given as: -
${\eta _{carnot}} = 1 - \dfrac{{{T_L}}}{{{T_H}}}$
where ${T_L} = $Lower Absolute Temperature = Temperature of the Sink
and, ${T_H} = $Higher Absolute Temperature = Temperature of the source
Complete answer:
We know that, the efficiency of Carnot Heat Engine is given as: -
${\eta _{carnot}} = 1 - \dfrac{{{T_L}}}{{{T_H}}}$ … (1)
where, ${T_L} = $Lower Absolute Temperature = Temperature of Cold Reservoir
and, ${T_H} = $Higher Absolute Temperature = Temperature of Hot Reservoir
We know that the Source behaves like a hot reservoir and the Sink behaves like a cold reservoir.
An ideal heat Engine works between the temperatures ${T_1}$ and ${T_2}$ has an efficiency $\eta $ (given). Then, from eq. (1), we get
$ \Rightarrow {\eta _{carnot}} = 1 - \dfrac{{{T_2}}}{{{T_1}}} = \eta $
$ \Rightarrow \eta = \dfrac{{{T_1} - {T_2}}}{{{T_1}}}$
Now, if both the temperatures get doubled, then new efficiency (say $\eta '$ ) will be: -
$\eta ' = \dfrac{{2{T_1} - 2{T_2}}}{{2{T_1}}}$
$ \Rightarrow \eta ' = \dfrac{{2\left( {{T_1} - {T_2}} \right)}}{{2{T_1}}} = \dfrac{{{T_1} - {T_2}}}{{{T_1}}} = \eta $
Thus, the new efficiency of an ideal heat engine when both the temperatures get doubled will remain the same i.e., $\eta $ .
Hence, the correct option is (B) $\eta $ .
Thus, the correct option is B.
Note:Since this is a multiple-choice question (conceptual-based) hence, it is essential that given conditions are analyzed very carefully to give an accurate solution. While writing an answer to this kind of conceptual problem, always keep in mind to use the mathematical proven relations to find the solution.
Formula Used:
The efficiency of Carnot’s Heat Engine is given as: -
${\eta _{carnot}} = 1 - \dfrac{{{T_L}}}{{{T_H}}}$
where ${T_L} = $Lower Absolute Temperature = Temperature of the Sink
and, ${T_H} = $Higher Absolute Temperature = Temperature of the source
Complete answer:
We know that, the efficiency of Carnot Heat Engine is given as: -
${\eta _{carnot}} = 1 - \dfrac{{{T_L}}}{{{T_H}}}$ … (1)
where, ${T_L} = $Lower Absolute Temperature = Temperature of Cold Reservoir
and, ${T_H} = $Higher Absolute Temperature = Temperature of Hot Reservoir
We know that the Source behaves like a hot reservoir and the Sink behaves like a cold reservoir.
An ideal heat Engine works between the temperatures ${T_1}$ and ${T_2}$ has an efficiency $\eta $ (given). Then, from eq. (1), we get
$ \Rightarrow {\eta _{carnot}} = 1 - \dfrac{{{T_2}}}{{{T_1}}} = \eta $
$ \Rightarrow \eta = \dfrac{{{T_1} - {T_2}}}{{{T_1}}}$
Now, if both the temperatures get doubled, then new efficiency (say $\eta '$ ) will be: -
$\eta ' = \dfrac{{2{T_1} - 2{T_2}}}{{2{T_1}}}$
$ \Rightarrow \eta ' = \dfrac{{2\left( {{T_1} - {T_2}} \right)}}{{2{T_1}}} = \dfrac{{{T_1} - {T_2}}}{{{T_1}}} = \eta $
Thus, the new efficiency of an ideal heat engine when both the temperatures get doubled will remain the same i.e., $\eta $ .
Hence, the correct option is (B) $\eta $ .
Thus, the correct option is B.
Note:Since this is a multiple-choice question (conceptual-based) hence, it is essential that given conditions are analyzed very carefully to give an accurate solution. While writing an answer to this kind of conceptual problem, always keep in mind to use the mathematical proven relations to find the solution.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Mass and Weight
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Sign up for JEE Main 2025 Live Classes - Vedantu
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)