
An object 5.0cm in length is placed at a distance of 20cm in front of a convex mirror of radius of curvature 30cm. Find the position of the image, its nature, and its size.
Answer
232.8k+ views
Hint: The convex and concave mirror are the two sides of a circular portion of a sphere. If you consider a circular portion of a sphere, applying the reflective coating on the outer side will make it a concave mirror and applying the reflective coating on the inner side will make it a convex mirror.
Irrespective of concave or convex mirror, the image formed will follow the mirror equation,
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$
where, f = focal length of the mirror, v = distance of image from pole, u = distance of object from pole.
Complete step by step solution:
Consider the object placed at a distance of 20cm in front of a convex mirror of radius of curvature, R = 30cm.
Distance of the object, u = – 20 cm
Focal length, $f = \dfrac{R}{2} = \dfrac{{30}}{2} = 15cm$
There are two rays emanating from the object,
i) First ray passes parallel to the principal axis and after deflection, when traced back, passes through primary focus, f.
ii) Second ray passes along the direction of secondary focus, 2f and retraces the same path as shown.
The image is formed at distance +v from the pole.
Applying the mirror equation, we get –
$\dfrac{1}{f} = \dfrac{1}{u} + \dfrac{1}{v}$
$\dfrac{1}{v} = \dfrac{1}{f} - \dfrac{1}{u}$
$ \Rightarrow \dfrac{1}{v} = \dfrac{1}{{15}} - \dfrac{1}{{\left( { - 20} \right)}}$
$ \Rightarrow \dfrac{1}{v} = \dfrac{1}{{15}} + \dfrac{1}{{20}} = \dfrac{7}{{60}}$
$ \Rightarrow \dfrac{1}{v} = \dfrac{1}{{15}} + \dfrac{1}{{20}} = \dfrac{7}{{60}}$
$\therefore v = \dfrac{{60}}{7} = 8.57cm$
The image is formed at a distance of 8.57 metres from the convex mirror.
Magnification is defined as the ratio between the height of the object to the height of the image. It represents the change in the height of the object after the reflection.
The formula for magnification in a mirror is –
$m = - \dfrac{v}{u} = - \dfrac{{8.57}}{{\left( { - 20} \right)}} = \dfrac{{8.57}}{{20}} = 0.428$
Since, the magnification is positive, the image is virtual and since it is lesser than one, it is diminished.
Therefore, The image is formed at a distance of 8.57 m from the pole and it is virtual and diminished.
Note: The students should exercise extreme caution while substituting the values of u and v in the equations. As you can see, in the above steps, the value of u is substituted with entire brackets first, and then, solved by removing the brackets. This is the best practice to avoid errors due to sign convention in these problems.
Irrespective of concave or convex mirror, the image formed will follow the mirror equation,
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$
where, f = focal length of the mirror, v = distance of image from pole, u = distance of object from pole.
Complete step by step solution:
Consider the object placed at a distance of 20cm in front of a convex mirror of radius of curvature, R = 30cm.
Distance of the object, u = – 20 cmFocal length, $f = \dfrac{R}{2} = \dfrac{{30}}{2} = 15cm$
There are two rays emanating from the object,
i) First ray passes parallel to the principal axis and after deflection, when traced back, passes through primary focus, f.
ii) Second ray passes along the direction of secondary focus, 2f and retraces the same path as shown.
The image is formed at distance +v from the pole.
Applying the mirror equation, we get –
$\dfrac{1}{f} = \dfrac{1}{u} + \dfrac{1}{v}$
$\dfrac{1}{v} = \dfrac{1}{f} - \dfrac{1}{u}$
$ \Rightarrow \dfrac{1}{v} = \dfrac{1}{{15}} - \dfrac{1}{{\left( { - 20} \right)}}$
$ \Rightarrow \dfrac{1}{v} = \dfrac{1}{{15}} + \dfrac{1}{{20}} = \dfrac{7}{{60}}$
$ \Rightarrow \dfrac{1}{v} = \dfrac{1}{{15}} + \dfrac{1}{{20}} = \dfrac{7}{{60}}$
$\therefore v = \dfrac{{60}}{7} = 8.57cm$
The image is formed at a distance of 8.57 metres from the convex mirror.
Magnification is defined as the ratio between the height of the object to the height of the image. It represents the change in the height of the object after the reflection.
The formula for magnification in a mirror is –
$m = - \dfrac{v}{u} = - \dfrac{{8.57}}{{\left( { - 20} \right)}} = \dfrac{{8.57}}{{20}} = 0.428$
Since, the magnification is positive, the image is virtual and since it is lesser than one, it is diminished.
Therefore, The image is formed at a distance of 8.57 m from the pole and it is virtual and diminished.
Note: The students should exercise extreme caution while substituting the values of u and v in the equations. As you can see, in the above steps, the value of u is substituted with entire brackets first, and then, solved by removing the brackets. This is the best practice to avoid errors due to sign convention in these problems.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

