
An oil of relative density $0.9$ and viscosity $0.12kg/ms$ flows through a $2.5cm$ diameter pipe with a pressure drop of $38.4kN/{m^2}$ in a length of $30cm$. Determine the power required to maintain the flow.
A) $2.2W$
B) $3.84W$
C) $5.6W$
D) $9.3W$
Answer
232.8k+ views
Hint: Relative density is defined as the ratio of the densities of any two materials taken. It is calculated as the ratio of the density of the substance given and a reference substance. The reference substance taken is usually water. It is used to determine the density of unknown substances.
Complete step by step solution:
Step I: According to Poiseuille’s Law, flow of liquid is related to a number of factors like pressure gradient $\Delta P$, viscosity of fluid $(\eta )$, length of the tube $L$ through which it flows and the radius. It is written by the equation
$Q = \dfrac{{\Delta P \times \pi {r^4}}}{{8\eta L}}$---(i)
Step II: Given $\Delta P = 38.4 \times {10^3}N/{m^2}$
If diameter, $D = 2.5 \times {10^{ - 2}}m$
Then radius, $r = 1.25 \times {10^{ - 2}}$
$L = 30m$
$\eta = 0.12N/{m^2}$
Step III: Substitute all the values in the given formula of equation (i)
$Q = \dfrac{{38.4 \times {{10}^3} \times 3.14 \times {{(1.25 \times {{10}^{ - 2}})}^4}}}{{8 \times 0.12 \times 30}}$
$Q = \dfrac{{38.4 \times {{10}^3} \times 3.14 \times 2.44 \times {{10}^8}}}{{28.8}}$
$Q = 1 \times {10^{ - 4}}m/s$
Step IV: Power gained by a fluid from a pump is given by the formula:
$P = \Delta P \times Q$
Where $\Delta P$is the change in pressure and
$Q$ is the Rate of flow of volume of oil in the pipe
Substituting the value in the above formula and solving for power,
$ = 38.4 \times {10^3} \times 1 \times {10^{ - 4}}$
$P = 3.84W$
Step V:
Hence the minimum power required to maintain the flow of oil in the pipe will be $3.84W.$
Therefore, Option (B) is the right answer.
Note: It is to be noted that the particles of liquid have spaces between them and their position is not fixed. Therefore due to the movement of the particles, the liquids do not have a fixed shape. They take the shape of the container in which they are placed. But the change in shape does not affect the volume of the liquids. The volume remains the same.
Complete step by step solution:
Step I: According to Poiseuille’s Law, flow of liquid is related to a number of factors like pressure gradient $\Delta P$, viscosity of fluid $(\eta )$, length of the tube $L$ through which it flows and the radius. It is written by the equation
$Q = \dfrac{{\Delta P \times \pi {r^4}}}{{8\eta L}}$---(i)
Step II: Given $\Delta P = 38.4 \times {10^3}N/{m^2}$
If diameter, $D = 2.5 \times {10^{ - 2}}m$
Then radius, $r = 1.25 \times {10^{ - 2}}$
$L = 30m$
$\eta = 0.12N/{m^2}$
Step III: Substitute all the values in the given formula of equation (i)
$Q = \dfrac{{38.4 \times {{10}^3} \times 3.14 \times {{(1.25 \times {{10}^{ - 2}})}^4}}}{{8 \times 0.12 \times 30}}$
$Q = \dfrac{{38.4 \times {{10}^3} \times 3.14 \times 2.44 \times {{10}^8}}}{{28.8}}$
$Q = 1 \times {10^{ - 4}}m/s$
Step IV: Power gained by a fluid from a pump is given by the formula:
$P = \Delta P \times Q$
Where $\Delta P$is the change in pressure and
$Q$ is the Rate of flow of volume of oil in the pipe
Substituting the value in the above formula and solving for power,
$ = 38.4 \times {10^3} \times 1 \times {10^{ - 4}}$
$P = 3.84W$
Step V:
Hence the minimum power required to maintain the flow of oil in the pipe will be $3.84W.$
Therefore, Option (B) is the right answer.
Note: It is to be noted that the particles of liquid have spaces between them and their position is not fixed. Therefore due to the movement of the particles, the liquids do not have a fixed shape. They take the shape of the container in which they are placed. But the change in shape does not affect the volume of the liquids. The volume remains the same.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

