An open U -tube of uniform cross-section contains mercury. When 27.2 cm of water is poured into one limb of the tube, (a) how high does the mercury rise in the limb from its initial level?
(b) what is the difference in levels of liquids of the two sides?
(\[{{\rho }_{w}}\]=1 and \[{{\rho }_{hg}}\]=13.6 units)
Answer
Verified
118.2k+ views
Hint: These works on the principle of Bernoulli’s theorem. Initially there was only mercury in the U tube and as such the height of the mercury must be the same in both the arms of the u tube. After we pour in some water, since mercury and water do not get mixed up, the mercury rises in one of the columns.
Complete step by step solution:
(a) Both the arms are open and exposed to the atmosphere, so pressure at the ends must be the same and equal to atmospheric pressure.
From Bernoulli’s theorem: \[P+\dfrac{\rho {{v}^{2}}}{2}+\rho gh\]
Since no motion, the velocity for both is zero. Thus, equating for mercury and the water we get,
$\Rightarrow P+{{\rho }_{w}}g{{h}_{w}}=P+{{\rho }_{hg}}g{{h}_{hg}} \\
\Rightarrow {{\rho }_{w}}g{{h}_{w}}={{\rho }_{hg}}g{{h}_{hg}} \\
\Rightarrow {{\rho }_{w}}{{h}_{w}}={{\rho }_{hg}}{{h}_{hg}} \\
\Rightarrow 1\times {{h}_{w}}=13.6\times {{h}_{hg}} \\
\Rightarrow 1\times 27.2=13.6\times 2x \\
\Rightarrow x=\dfrac{27.2}{13.6\times 2} \\
\therefore x=1cm \\$
Since the rise from the initial level, we have taken the height to be twice.
(b) Difference in levels of liquids of the two sides$27.2-2x=25.2cm$
Note: while solving all these kinds of problems involving the U tube, or the manometer or the hydrolift, the working theorem is Bernoulli's theorem. According to Bernoulli’s theorem, the sum of pressure energy, kinetic energy, and potential energy per unit mass of an incompressible, nonviscous fluid in a streamlined flow remains a constant.
This holds for non viscous liquids and in this problem we were given water and mercury and both are non viscous.
Complete step by step solution:
(a) Both the arms are open and exposed to the atmosphere, so pressure at the ends must be the same and equal to atmospheric pressure.
From Bernoulli’s theorem: \[P+\dfrac{\rho {{v}^{2}}}{2}+\rho gh\]
Since no motion, the velocity for both is zero. Thus, equating for mercury and the water we get,
$\Rightarrow P+{{\rho }_{w}}g{{h}_{w}}=P+{{\rho }_{hg}}g{{h}_{hg}} \\
\Rightarrow {{\rho }_{w}}g{{h}_{w}}={{\rho }_{hg}}g{{h}_{hg}} \\
\Rightarrow {{\rho }_{w}}{{h}_{w}}={{\rho }_{hg}}{{h}_{hg}} \\
\Rightarrow 1\times {{h}_{w}}=13.6\times {{h}_{hg}} \\
\Rightarrow 1\times 27.2=13.6\times 2x \\
\Rightarrow x=\dfrac{27.2}{13.6\times 2} \\
\therefore x=1cm \\$
Since the rise from the initial level, we have taken the height to be twice.
(b) Difference in levels of liquids of the two sides$27.2-2x=25.2cm$
Note: while solving all these kinds of problems involving the U tube, or the manometer or the hydrolift, the working theorem is Bernoulli's theorem. According to Bernoulli’s theorem, the sum of pressure energy, kinetic energy, and potential energy per unit mass of an incompressible, nonviscous fluid in a streamlined flow remains a constant.
This holds for non viscous liquids and in this problem we were given water and mercury and both are non viscous.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main
At which height is gravity zero class 11 physics JEE_Main
A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN
A wave is travelling along a string At an instant the class 11 physics JEE_Main
The length of a conductor is halved its conductivity class 11 physics JEE_Main
The x t graph of a particle undergoing simple harmonic class 11 physics JEE_MAIN
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
JEE Main Chemistry Exam Pattern 2025
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
Find the current in wire AB class 11 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)