
Angle of minimum deviation of a prism of a refractive index 1.5 is equal to the angle of the prism of prism. Then the angle of the prism is:
A. ${41^{^ \circ }}24'$
B. ${80^ \circ }$
C. ${60^ \circ }$
D. ${82^ \circ }48'$
Answer
142.2k+ views
Hint In the question, the angle of minimum deviation of a prism of a refractive index is given. By using the trigonometric equations in the refractive index as per the given conditions and simplifying the equation, then we get the value of the angle of the prism.
Complete step by step solution
A prism is a wedge-shaped body made from a refracting medium bounded by two plane faces inclined to each other at some angle. The two plane faces are called the refracting faces and the angle included between these faces is called the angle of the prism or the angle of the refraction.
Let ${\delta _m}$ be the angle of minimum deviation of the prism.
$A = {\delta _m}$
$\mu = \dfrac{{\sin \dfrac{{\left( {A + {\delta _m}} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the parameter of ${\delta _m}$in the above equation, we get
$\mu = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the known values in the above equation, we get
$1.5 = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = \dfrac{{\sin \,2\left( {\dfrac{A}{2}} \right)}}{{\sin \,\left( {\dfrac{A}{2}} \right)}}$
Performing the algebraic operation in the above equation, we get
$1.5 = \dfrac{{2\operatorname{Sin} \dfrac{A}{2}\cos \dfrac{A}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = 2\cos \,\dfrac{A}{2}$
Performing the arithmetic operation in the above equation, we get
$0.75 = \cos \dfrac{A}{2}$
Convert the equation in terms of A, we get
$\dfrac{A}{2} = {\cos ^{ - 1}}\left( {0.75} \right)$
Substitute the algebraic parameters in terms of the equation, we get
$A = 41 \times 2$
$A = {82^ \circ }.$
Therefore, the angle of the prism is ${82^ \circ }.$
Hence from the above options, option D is correct.
Note In the question, a refractive index is given. If here the angle of the prism is given. By substitute those values in the expression of the angle of the deviation of the prism. We get the value of the angle of the prism.
Complete step by step solution
A prism is a wedge-shaped body made from a refracting medium bounded by two plane faces inclined to each other at some angle. The two plane faces are called the refracting faces and the angle included between these faces is called the angle of the prism or the angle of the refraction.
Let ${\delta _m}$ be the angle of minimum deviation of the prism.
$A = {\delta _m}$
$\mu = \dfrac{{\sin \dfrac{{\left( {A + {\delta _m}} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the parameter of ${\delta _m}$in the above equation, we get
$\mu = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the known values in the above equation, we get
$1.5 = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = \dfrac{{\sin \,2\left( {\dfrac{A}{2}} \right)}}{{\sin \,\left( {\dfrac{A}{2}} \right)}}$
Performing the algebraic operation in the above equation, we get
$1.5 = \dfrac{{2\operatorname{Sin} \dfrac{A}{2}\cos \dfrac{A}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = 2\cos \,\dfrac{A}{2}$
Performing the arithmetic operation in the above equation, we get
$0.75 = \cos \dfrac{A}{2}$
Convert the equation in terms of A, we get
$\dfrac{A}{2} = {\cos ^{ - 1}}\left( {0.75} \right)$
Substitute the algebraic parameters in terms of the equation, we get
$A = 41 \times 2$
$A = {82^ \circ }.$
Therefore, the angle of the prism is ${82^ \circ }.$
Hence from the above options, option D is correct.
Note In the question, a refractive index is given. If here the angle of the prism is given. By substitute those values in the expression of the angle of the deviation of the prism. We get the value of the angle of the prism.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
