
Aniline is not a major product in one of the following reactions. Identify that reaction.
A. ${{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH + N}}{{\text{H}}_{\text{3}}}\xrightarrow[{300^\circ {\text{C}}}]{{{\text{ZnC}}{{\text{l}}_{\text{2}}}}}$
B. ${{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{N}}{{\text{O}}_2}{\text{ + ZnPowder}}\xrightarrow{{{\text{alcoholicKOH}}}}$
C. ${{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{Cl + N}}{{\text{H}}_{\text{3}}}\xrightarrow[{{\text{C}}{{\text{u}}_{\text{2}}}{\text{O}}}]{{200^\circ {\text{C}}}}$
D. ${{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{N}}{{\text{O}}_2}{\text{ + Fe + }}{{\text{H}}_2}{\text{O}}\xrightarrow{{{\text{HCl}}}}$
Answer
224.1k+ views
Hint: The reduction of nitro compounds with active metals in alkaline medium gives hydrazobenzene.
The catalytic reduction of nitro compounds in acidic medium is a very convenient method of preparing aromatic primary amines as they cannot be prepared from the corresponding aryl halides on treatment with ammonia.
Complete step by step answer:
Let us study the given reactions one by one.
The first reaction is given to be ${{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH + N}}{{\text{H}}_{\text{3}}}\xrightarrow[{300^\circ {\text{C}}}]{{{\text{ZnC}}{{\text{l}}_{\text{2}}}}}$ .
This is a reaction between phenol and ammonia in presence of zinc chloride.
When a mixture of the vapours of phenol and ammonia are passed over zinc chloride, aniline is formed. Since phenols are less reactive towards nucleophilic substitution reactions, so, severe conditions like high pressure are usually employed. Thus, aniline can be prepared by the action of ammonia on phenol. So the major product of the given reaction is aniline and hence option A is not correct.

The next reaction is given to be ${{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{N}}{{\text{O}}_2}{\text{ + ZnPowder}}\xrightarrow{{{\text{alcoholicKOH}}}}$ .
This is a reaction between nitrobenzene and zinc powder in presence of alcoholic potassium hydroxide.
It is known that the reduction of nitrobenzene with zinc in presence of alcoholic potassium hydroxide gives hydrazobenzene.

Thus, the reduction of nitrobenzene with zinc in alkaline medium produces hydrazobenzene. So, the major product of this reaction is not aniline and so the option B is correct.
The next reaction is ${{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{Cl + N}}{{\text{H}}_{\text{3}}}\xrightarrow[{{\text{C}}{{\text{u}}_{\text{2}}}{\text{O}}}]{{200^\circ {\text{C}}}}$ .
This is a reaction between chlorobenzene with ammonia in presence of cuprous oxide. This reaction gives aniline as the major product and so C is wrong.

The last reaction is given to be ${{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{N}}{{\text{O}}_2}{\text{ + Fe + }}{{\text{H}}_2}{\text{O}}\xrightarrow{{{\text{HCl}}}}$ .
This is a reaction between nitrobenzene and iron in presence of hydrochloric acid.
It is known that the catalytic reduction of nitro compounds with an active metal like iron, tin, zinc etc. in acidic medium like concentrated hydrochloric acid gives aromatic primary amines.
Thus, the given reaction will give aniline as the major product and so option D is incorrect.

Note:
The reduction of nitrobenzene with zinc and methanolic sodium hydroxide gives azobenzene.

The reduction of nitrobenzene with zinc dust and aqueous ammonium chloride (neutral medium) gives phenyl hydroxylamine.

The catalytic reduction of nitro compounds in acidic medium is a very convenient method of preparing aromatic primary amines as they cannot be prepared from the corresponding aryl halides on treatment with ammonia.
Complete step by step answer:
Let us study the given reactions one by one.
The first reaction is given to be ${{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH + N}}{{\text{H}}_{\text{3}}}\xrightarrow[{300^\circ {\text{C}}}]{{{\text{ZnC}}{{\text{l}}_{\text{2}}}}}$ .
This is a reaction between phenol and ammonia in presence of zinc chloride.
When a mixture of the vapours of phenol and ammonia are passed over zinc chloride, aniline is formed. Since phenols are less reactive towards nucleophilic substitution reactions, so, severe conditions like high pressure are usually employed. Thus, aniline can be prepared by the action of ammonia on phenol. So the major product of the given reaction is aniline and hence option A is not correct.

The next reaction is given to be ${{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{N}}{{\text{O}}_2}{\text{ + ZnPowder}}\xrightarrow{{{\text{alcoholicKOH}}}}$ .
This is a reaction between nitrobenzene and zinc powder in presence of alcoholic potassium hydroxide.
It is known that the reduction of nitrobenzene with zinc in presence of alcoholic potassium hydroxide gives hydrazobenzene.

Thus, the reduction of nitrobenzene with zinc in alkaline medium produces hydrazobenzene. So, the major product of this reaction is not aniline and so the option B is correct.
The next reaction is ${{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{Cl + N}}{{\text{H}}_{\text{3}}}\xrightarrow[{{\text{C}}{{\text{u}}_{\text{2}}}{\text{O}}}]{{200^\circ {\text{C}}}}$ .
This is a reaction between chlorobenzene with ammonia in presence of cuprous oxide. This reaction gives aniline as the major product and so C is wrong.

The last reaction is given to be ${{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{N}}{{\text{O}}_2}{\text{ + Fe + }}{{\text{H}}_2}{\text{O}}\xrightarrow{{{\text{HCl}}}}$ .
This is a reaction between nitrobenzene and iron in presence of hydrochloric acid.
It is known that the catalytic reduction of nitro compounds with an active metal like iron, tin, zinc etc. in acidic medium like concentrated hydrochloric acid gives aromatic primary amines.
Thus, the given reaction will give aniline as the major product and so option D is incorrect.

Note:
The reduction of nitrobenzene with zinc and methanolic sodium hydroxide gives azobenzene.

The reduction of nitrobenzene with zinc dust and aqueous ammonium chloride (neutral medium) gives phenyl hydroxylamine.

Recently Updated Pages
JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Introduction to Dimensions: Understanding the Basics

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Hybridisation in Chemistry – Concept, Types & Applications

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 4 The D and F Block Elements

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules - 2025-26

