ASSERTION: In a series LCR circuit at resonance condition, power consumed by the circuit is maximum.
REASON: At resonance, the effective resistance of the circuit is maximum.
(A) Both ASSERTION and REASON are correct and REASON is the correct explanation for ASSERTION.
(B) Both ASSERTION and REASON are correct but REASON is not the correct explanation for ASSERTION.
(C) ASSERTION is correct but REASON is incorrect
(D) Both ASSERTION and REASON are incorrect.
Answer
Verified
115.8k+ views
Hint: When a series LCR circuit is in resonance, the impedance of the same series LCR circuit is minimum. This happens because the inductance and capacitance are equal in magnitude. As a result of this the current in the series LCR circuit also becomes maximum. We can easily arrive at the correct answer if we remember the relationship between the current in a series LCR circuit and the power consumed.
Complete step by step answer:
When a series LCR circuit comes in the state of resonance, the impedance becomes minimum and thus $Z = R\Omega $. We already know that this happens because the value of both inductance and capacitance becomes equal. Now, as the root mean square current is inversely proportional to the value of impedance $({I_{rms}} = \dfrac{{{V_{rms}}}}{Z} = \dfrac{{{V_{rms}}}}{R})$ thus the value of current increases. Now, we already know that the power of a series LCR circuit is given by the mathematical expression $P = I_{rms}^2R$ thus we can say that the power of a series LCR circuit is maximum during resonance. But this is not because the effective resistance is maximum but rather because the root mean square current is maximum. Thus we can say that the ASSERTION given in the question is correct but the REASON is incorrect.
Hence, the correct answer to the above problem is (C).
Note: It is always important to remember how the value of one variable influences the value of another in questions related to series or parallel LCR circuits in resonance. Many students approach the problem in a wrong manner and just use the expression for power to justify their answer. It is better to start to analyse each and every term given in the question and its influence in other terms. This way we can arrive at the right answer.
Complete step by step answer:
When a series LCR circuit comes in the state of resonance, the impedance becomes minimum and thus $Z = R\Omega $. We already know that this happens because the value of both inductance and capacitance becomes equal. Now, as the root mean square current is inversely proportional to the value of impedance $({I_{rms}} = \dfrac{{{V_{rms}}}}{Z} = \dfrac{{{V_{rms}}}}{R})$ thus the value of current increases. Now, we already know that the power of a series LCR circuit is given by the mathematical expression $P = I_{rms}^2R$ thus we can say that the power of a series LCR circuit is maximum during resonance. But this is not because the effective resistance is maximum but rather because the root mean square current is maximum. Thus we can say that the ASSERTION given in the question is correct but the REASON is incorrect.
Hence, the correct answer to the above problem is (C).
Note: It is always important to remember how the value of one variable influences the value of another in questions related to series or parallel LCR circuits in resonance. Many students approach the problem in a wrong manner and just use the expression for power to justify their answer. It is better to start to analyse each and every term given in the question and its influence in other terms. This way we can arrive at the right answer.
Recently Updated Pages
JEE Energetics Important Concepts and Tips for Exam Preparation
Arithmetic, Geometric and Harmonic Progression - Important Concepts and Tips for JEE
Centrifugal Force - Important Concepts and Tips for JEE
JEE Main 2022 June 29 Shift 1 Question Paper with Answer Key
Household Electricity Important Concepts and Tips for JEE
JEE Main 2023 (January 31st Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Young's Double Slit Experiment Derivation
Current Loop as Magnetic Dipole and Its Derivation for JEE
When Barium is irradiated by a light of lambda 4000oversetomathopA class 12 physics JEE_Main