
Assertion: Soft and hard X− rays differ in frequency as well as velocity.
Reason: The penetrating power of hard X−rays is more than the penetrating power of soft X−rays.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If the assertion is true but the reason is false.
D. If the assertion and reason both are false
E. If assertion is false but the reason is true
Answer
138.9k+ views
Hint: Hard X-rays have higher energy than soft X-rays, which have lower energies. The energy has an inverse relationship with wavelength and is directly proportional to frequency. Therefore, the wavelength is shorter and the frequency is higher when the energy is larger.
Formula used:
The relationship between the matching photon's energy and X-ray wavelength is,
$E = \dfrac{{hc}}{\lambda }$
Here, $c$ is the speed of light, $\lambda$ is the wavelength of X-ray and $h$ is Planck's constant.
Complete step by step solution:
The high energy electromagnetic spectrum includes X-rays. X-rays have a shorter wavelength than visible rays because they are more energetic (since energy is inversely proportional to wavelength). Many objects, including the body, are transparent to them. As a result, they are employed to produce images of bones and tissues. The relationship between the matching photon's energy and X-ray wavelength is:
$E = \dfrac{{hc}}{\lambda }$
Larger wavelength X-rays are referred to as soft X-rays, while those with lower wavelengths are known as hard X-rays. Comparatively speaking, soft X-rays are generated at a lower potential difference than hard X-rays. They have a wavelength of $4\mathop A\limits^ \circ $ or above. Additionally, they have lower frequencies, which means less energy. Low penetrating power is another classification for soft X-rays.
On the other hand, hard X-rays have wavelengths in the order of $1\mathop A\limits^ \circ $ are additionally linked to higher frequency, and hence, higher energy. Because of all these qualities, they have a great penetrating power. The only difference between soft and hard X-rays is frequency. However, both kinds of X move at the speed of light.
Hence option E is correct.
Note: Making the word "hard" synonymous with the word "more" will help students remember the distinction between hard and soft X-rays. Therefore, hard X-rays have higher energy. And once it is shown that they have greater energy, it will be obvious that the relationship between these two variables—wavelength and energy—is inverse. Thus, the wavelength will be shorter the higher the energy.
Formula used:
The relationship between the matching photon's energy and X-ray wavelength is,
$E = \dfrac{{hc}}{\lambda }$
Here, $c$ is the speed of light, $\lambda$ is the wavelength of X-ray and $h$ is Planck's constant.
Complete step by step solution:
The high energy electromagnetic spectrum includes X-rays. X-rays have a shorter wavelength than visible rays because they are more energetic (since energy is inversely proportional to wavelength). Many objects, including the body, are transparent to them. As a result, they are employed to produce images of bones and tissues. The relationship between the matching photon's energy and X-ray wavelength is:
$E = \dfrac{{hc}}{\lambda }$
Larger wavelength X-rays are referred to as soft X-rays, while those with lower wavelengths are known as hard X-rays. Comparatively speaking, soft X-rays are generated at a lower potential difference than hard X-rays. They have a wavelength of $4\mathop A\limits^ \circ $ or above. Additionally, they have lower frequencies, which means less energy. Low penetrating power is another classification for soft X-rays.
On the other hand, hard X-rays have wavelengths in the order of $1\mathop A\limits^ \circ $ are additionally linked to higher frequency, and hence, higher energy. Because of all these qualities, they have a great penetrating power. The only difference between soft and hard X-rays is frequency. However, both kinds of X move at the speed of light.
Hence option E is correct.
Note: Making the word "hard" synonymous with the word "more" will help students remember the distinction between hard and soft X-rays. Therefore, hard X-rays have higher energy. And once it is shown that they have greater energy, it will be obvious that the relationship between these two variables—wavelength and energy—is inverse. Thus, the wavelength will be shorter the higher the energy.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Physics Average Value and RMS Value JEE Main 2025

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Charging and Discharging of Capacitor
