
Assertion: The melting point $\text{Mn}$ is more than that of $\text{Fe}$.
Reason: $\text{Mn}$has a higher number of unpaired e than $\text{Fe}$ in the atomic state.
A) Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
B) Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
C) Assertion is correct but Reason is incorrect
D) Assertion is incorrect but Reason is correct
Answer
216k+ views
Hint: This $\text{Mn}$ is a transition metal. It has the electronic configuration\[\left[ \text{Ar} \right]\text{3}{{\text{d}}^{\text{5}}}\text{4}{{\text{s}}^{\text{2}}}\]. It is a half-filled d-orbital and has extraordinary stability. Thus even though it has a maximum number of electrons, it cannot form a metallic bond. Thus it has a low melting point.
Complete step by step solution:
The transition metals have very high melting and boiling points. The melting point of the metals rises and reaches the maximum and then decreases with an increase in atomic number.
The high boiling or melting point of transition metal is due to the strong metallic bond between the atoms of these elements. This is also evident from the fact that these metals have high enthalpies of atomization. The metallic bond is formed due to the interaction of electrons in outermost orbitals. The strength of bonding is roughly related to the number of unpaired electrons. In general, the greater is the number of valence electrons, the higher is the melting point. Therefore, as we move along a 3d series, the metallic strength increases up to the middle with increasing the availability of unpaired electron up to the ${{\text{d}}^{\text{5}}}$ configuration and then decreases after the middle.
If we follow this trend then $\text{Mn}$ should have a higher melting point than $\text{Fe}$.
However, there is a dip in the melting point$\text{Mn}$. This is an unexpected observation probably because $\text{Mn}$ has a stable electronic configuration(half-filled ${{\text{d}}^{\text{5}}}$and filled \[\text{4}{{\text{s}}^{\text{2}}}\] ).as a result the stable configuration decrease the localization of electrons resulting in the weaker metallic bonding than the other elements.
Thus $\text{Mn}$have a lower melting point than the $\text{Fe}$.this is because the $\text{Mn}$ has a higher number of unpaired e than Fe in the atomic state.
Therefore the assertion is incorrect but the reason is the correct statement.
Hence, (D) is the correct option.
Note: The same trend of the melting point and abnormal lower melting point is observed in the second and third transition metal series with \[\text{Tc}\] and $\text{ Re}$.
Complete step by step solution:
The transition metals have very high melting and boiling points. The melting point of the metals rises and reaches the maximum and then decreases with an increase in atomic number.
The high boiling or melting point of transition metal is due to the strong metallic bond between the atoms of these elements. This is also evident from the fact that these metals have high enthalpies of atomization. The metallic bond is formed due to the interaction of electrons in outermost orbitals. The strength of bonding is roughly related to the number of unpaired electrons. In general, the greater is the number of valence electrons, the higher is the melting point. Therefore, as we move along a 3d series, the metallic strength increases up to the middle with increasing the availability of unpaired electron up to the ${{\text{d}}^{\text{5}}}$ configuration and then decreases after the middle.
If we follow this trend then $\text{Mn}$ should have a higher melting point than $\text{Fe}$.
However, there is a dip in the melting point$\text{Mn}$. This is an unexpected observation probably because $\text{Mn}$ has a stable electronic configuration(half-filled ${{\text{d}}^{\text{5}}}$and filled \[\text{4}{{\text{s}}^{\text{2}}}\] ).as a result the stable configuration decrease the localization of electrons resulting in the weaker metallic bonding than the other elements.
Thus $\text{Mn}$have a lower melting point than the $\text{Fe}$.this is because the $\text{Mn}$ has a higher number of unpaired e than Fe in the atomic state.
Therefore the assertion is incorrect but the reason is the correct statement.
Hence, (D) is the correct option.
Note: The same trend of the melting point and abnormal lower melting point is observed in the second and third transition metal series with \[\text{Tc}\] and $\text{ Re}$.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

