Assertion :- Vector addition is commutative.
Reason :- ($\vec{A}$+ $\vec{B}$) $\ne $ ($\vec{B}$+ $\vec{A}$)
( a ) Both assertion and reason are correct and reason is the correct explanation for assertion.
( b ) Both assertion and reason are correct and reason is not the correct explanation for assertion.
( c ) Assertion is correct but the reason is incorrect.
( d ) Both assertion and reason are incorrect.
Answer
Verified
116.4k+ views
Hint:
In this question, we are given that the addition of a vector is commutative. And the commutative law says that in which order we add the terms doesn’t matter. That is x+y = y+x. We find the vector A + B is equal or not equal to vector B + A then we choose the correct option.
Complete step by step solution:
Consider that we have two vectors $\vec{A}$ and $\vec{B}$ and we suppose that these are in ‘n’ dimensions.
Therefore, we can write $\vec{A}$as
< ${{A}_{1}},{{A}_{2}},{{A}_{3}},.....................,{{A}_{n}}$> and
$\vec{B}$ can be written as
<${{B}_{1}},{{B}_{2}},{{B}_{3}},.....................,{{B}_{n}}$>
Now we can find out $\vec{A}$ + $\vec{B}$
That is $\vec{A}$ + $\vec{B}$ = < ${{A}_{1}}+{{B}_{1}},{{A}_{2}}+{{B}_{2}},{{A}_{3}}+{{B}_{3}},.....................,{{A}_{n}}+{{B}_{n}}$>
As all the ${{A}_{i}}'s$ and the ${{B}_{i}}'s$ are the real numbers, therefore we can write the above equation as
$\vec{A}$ + $\vec{B}$ = <${{B}_{1}}+{{A}_{1}},{{B}_{2}}+{{A}_{2}},{{B}_{3}}+{{A}_{3}},.....................,{{B}_{n}}+{{A}_{n}}$>
This can be called as $\vec{B}$+ $\vec{A}$
Since vector addition is commutative,
Therefore :- ($\vec{A}$+ $\vec{B}$) = ($\vec{B}$+ $\vec{A}$)
Hence, the assertion is correct but the reason is incorrect.
Thus, Option (C) is the correct answer.
Therefore, the correct option is C.
Note:
In this question, we have to add the two vectors. Students must keep in mind the basic properties of vectors and how these properties are implemented on vectors. Questions may be asked on other properties like additive, homogeneity etc.
In this question, we are given that the addition of a vector is commutative. And the commutative law says that in which order we add the terms doesn’t matter. That is x+y = y+x. We find the vector A + B is equal or not equal to vector B + A then we choose the correct option.
Complete step by step solution:
Consider that we have two vectors $\vec{A}$ and $\vec{B}$ and we suppose that these are in ‘n’ dimensions.
Therefore, we can write $\vec{A}$as
< ${{A}_{1}},{{A}_{2}},{{A}_{3}},.....................,{{A}_{n}}$> and
$\vec{B}$ can be written as
<${{B}_{1}},{{B}_{2}},{{B}_{3}},.....................,{{B}_{n}}$>
Now we can find out $\vec{A}$ + $\vec{B}$
That is $\vec{A}$ + $\vec{B}$ = < ${{A}_{1}}+{{B}_{1}},{{A}_{2}}+{{B}_{2}},{{A}_{3}}+{{B}_{3}},.....................,{{A}_{n}}+{{B}_{n}}$>
As all the ${{A}_{i}}'s$ and the ${{B}_{i}}'s$ are the real numbers, therefore we can write the above equation as
$\vec{A}$ + $\vec{B}$ = <${{B}_{1}}+{{A}_{1}},{{B}_{2}}+{{A}_{2}},{{B}_{3}}+{{A}_{3}},.....................,{{B}_{n}}+{{A}_{n}}$>
This can be called as $\vec{B}$+ $\vec{A}$
Since vector addition is commutative,
Therefore :- ($\vec{A}$+ $\vec{B}$) = ($\vec{B}$+ $\vec{A}$)
Hence, the assertion is correct but the reason is incorrect.
Thus, Option (C) is the correct answer.
Therefore, the correct option is C.
Note:
In this question, we have to add the two vectors. Students must keep in mind the basic properties of vectors and how these properties are implemented on vectors. Questions may be asked on other properties like additive, homogeneity etc.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main Chemistry Exam Pattern 2025 (Revised) - Vedantu
JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key
Trending doubts
Which of the following is the smallest unit of length class 11 physics JEE_Main
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Current Loop as Magnetic Dipole and Its Derivation for JEE
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions