
Assertion :- Vector addition is commutative.
Reason :- ($\vec{A}$+ $\vec{B}$) $\ne $ ($\vec{B}$+ $\vec{A}$)
( a ) Both assertion and reason are correct and reason is the correct explanation for assertion.
( b ) Both assertion and reason are correct and reason is not the correct explanation for assertion.
( c ) Assertion is correct but the reason is incorrect.
( d ) Both assertion and reason are incorrect.
Answer
216.6k+ views
Hint:
In this question, we are given that the addition of a vector is commutative. And the commutative law says that in which order we add the terms doesn’t matter. That is x+y = y+x. We find the vector A + B is equal or not equal to vector B + A then we choose the correct option.
Complete step by step solution:
Consider that we have two vectors $\vec{A}$ and $\vec{B}$ and we suppose that these are in ‘n’ dimensions.
Therefore, we can write $\vec{A}$as
< ${{A}_{1}},{{A}_{2}},{{A}_{3}},.....................,{{A}_{n}}$> and
$\vec{B}$ can be written as
<${{B}_{1}},{{B}_{2}},{{B}_{3}},.....................,{{B}_{n}}$>
Now we can find out $\vec{A}$ + $\vec{B}$
That is $\vec{A}$ + $\vec{B}$ = < ${{A}_{1}}+{{B}_{1}},{{A}_{2}}+{{B}_{2}},{{A}_{3}}+{{B}_{3}},.....................,{{A}_{n}}+{{B}_{n}}$>
As all the ${{A}_{i}}'s$ and the ${{B}_{i}}'s$ are the real numbers, therefore we can write the above equation as
$\vec{A}$ + $\vec{B}$ = <${{B}_{1}}+{{A}_{1}},{{B}_{2}}+{{A}_{2}},{{B}_{3}}+{{A}_{3}},.....................,{{B}_{n}}+{{A}_{n}}$>
This can be called as $\vec{B}$+ $\vec{A}$
Since vector addition is commutative,
Therefore :- ($\vec{A}$+ $\vec{B}$) = ($\vec{B}$+ $\vec{A}$)
Hence, the assertion is correct but the reason is incorrect.
Thus, Option (C) is the correct answer.
Therefore, the correct option is C.
Note:
In this question, we have to add the two vectors. Students must keep in mind the basic properties of vectors and how these properties are implemented on vectors. Questions may be asked on other properties like additive, homogeneity etc.
In this question, we are given that the addition of a vector is commutative. And the commutative law says that in which order we add the terms doesn’t matter. That is x+y = y+x. We find the vector A + B is equal or not equal to vector B + A then we choose the correct option.
Complete step by step solution:
Consider that we have two vectors $\vec{A}$ and $\vec{B}$ and we suppose that these are in ‘n’ dimensions.
Therefore, we can write $\vec{A}$as
< ${{A}_{1}},{{A}_{2}},{{A}_{3}},.....................,{{A}_{n}}$> and
$\vec{B}$ can be written as
<${{B}_{1}},{{B}_{2}},{{B}_{3}},.....................,{{B}_{n}}$>
Now we can find out $\vec{A}$ + $\vec{B}$
That is $\vec{A}$ + $\vec{B}$ = < ${{A}_{1}}+{{B}_{1}},{{A}_{2}}+{{B}_{2}},{{A}_{3}}+{{B}_{3}},.....................,{{A}_{n}}+{{B}_{n}}$>
As all the ${{A}_{i}}'s$ and the ${{B}_{i}}'s$ are the real numbers, therefore we can write the above equation as
$\vec{A}$ + $\vec{B}$ = <${{B}_{1}}+{{A}_{1}},{{B}_{2}}+{{A}_{2}},{{B}_{3}}+{{A}_{3}},.....................,{{B}_{n}}+{{A}_{n}}$>
This can be called as $\vec{B}$+ $\vec{A}$
Since vector addition is commutative,
Therefore :- ($\vec{A}$+ $\vec{B}$) = ($\vec{B}$+ $\vec{A}$)
Hence, the assertion is correct but the reason is incorrect.
Thus, Option (C) is the correct answer.
Therefore, the correct option is C.
Note:
In this question, we have to add the two vectors. Students must keep in mind the basic properties of vectors and how these properties are implemented on vectors. Questions may be asked on other properties like additive, homogeneity etc.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

