Assertion: When a white light is passed through a lens, violet light is more diffracted than red light.
Reason: Focal length for red light is greater than violet.
A) Both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
B) Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion.
C) Assertion is correct but Reason is incorrect.
D) Both Assertion and Reason are incorrect.
Answer
Verified
117.9k+ views
Hint: Think about the dependency of wavelength, focal length and refractive index with each other. Also compare the wavelength of red and violet light. In the spectrum of light, red with maximum wavelength and violet light has the minimum wavelength.
Complete step by step solution:
We know refractive index is related with wavelength by
$\mu \propto \dfrac{1}{\lambda }$
Since the wavelength of red is greater than that of violet, refractive index of violet light is more than that of red light.
Now, the refractive index and focal length are related by
$\dfrac{1}{f} = \left( {{\mu _{rel}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Thus the focal length increases when the refractive index decreases.
Deviation is the angle by which a refracted ray deviates from its original path before refraction. More deviation means that a ray is more refracted.
Also, deviation is related to refractive index as
$\delta = A\left( {\mu - 1} \right)$
Thus deviation is more for a greater refractive index.
Finally from the above equations we can tell that,
${\mu _V} > {\mu _R}$
${f_R} > {f_V}$
${\delta _V} > {\delta _R}$
Since, violet light has greater refractive index thus when a white light is passed through a lens, violet light is more diffracted than red light.
Also from the above deduced relations we get that,
Focal length for red light is greater than violet.
Hence, both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
Hence, Option (A) is correct.
Note: Write the correct relation between refractive index, focal length and deviation of violet light and red light. Also make sure that the reason is apt for the given assertion.
Complete step by step solution:
We know refractive index is related with wavelength by
$\mu \propto \dfrac{1}{\lambda }$
Since the wavelength of red is greater than that of violet, refractive index of violet light is more than that of red light.
Now, the refractive index and focal length are related by
$\dfrac{1}{f} = \left( {{\mu _{rel}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Thus the focal length increases when the refractive index decreases.
Deviation is the angle by which a refracted ray deviates from its original path before refraction. More deviation means that a ray is more refracted.
Also, deviation is related to refractive index as
$\delta = A\left( {\mu - 1} \right)$
Thus deviation is more for a greater refractive index.
Finally from the above equations we can tell that,
${\mu _V} > {\mu _R}$
${f_R} > {f_V}$
${\delta _V} > {\delta _R}$
Since, violet light has greater refractive index thus when a white light is passed through a lens, violet light is more diffracted than red light.
Also from the above deduced relations we get that,
Focal length for red light is greater than violet.
Hence, both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
Hence, Option (A) is correct.
Note: Write the correct relation between refractive index, focal length and deviation of violet light and red light. Also make sure that the reason is apt for the given assertion.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Draw the structure of a butanone molecule class 10 chemistry JEE_Main
The probability of selecting a rotten apple randomly class 10 maths JEE_Main
Difference Between Vapor and Gas: JEE Main 2024
Area of an Octagon Formula - Explanation, and FAQs
Difference Between Solute and Solvent: JEE Main 2024
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Explain the construction and working of a GeigerMuller class 12 physics JEE_Main
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
Other Pages
JEE Main Chemistry Exam Pattern 2025
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
A combination of five resistors is connected to a cell class 12 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
A shortcircuited coil is placed in a timevarying magnetic class 12 physics JEE_Main