At the moment $t = 0$ a particle leaves the origin and moves in the positive direction of the $x - axis$. Its velocity varies with time as $\upsilon = {\upsilon _0}\left( {1 - t/r} \right)$, where ${\upsilon _0}$ is the initial velocity vector whose modulus equals${\upsilon _0} = 10.0cm/s.t = 5.0s$. Find:
$\left( a \right)$ the $x$ coordinate of the particle at the moments of time $6.0,10,{\text{ and 20s}}{\text{.}}$
$\left( b \right)$ the moments when the particles are at the distance $10.0cm$ from the origin,
$\left( c \right)$ the distance $s$ covered by the particle during the first $4.0{\text{ and 8}}{\text{.0s}}$, draw the approximate plot$s\left( t \right)$.
Answer
Verified
116.4k+ views
Hint The meaning of speed of an object is outlined because of the rate of change of the object’s position with relation to a frame of reference and time. It would sound difficult however velocity is largely speeding in a very specific direction. It’s a vector quantity, which implies we'd like each magnitude (speed) and direction to outline velocity.
Complete step by step solution:
$\left( a \right)$As the particles leaving the origin at $t = 0$
So,
$ \Rightarrow \vartriangle x = x - \int {{v_x}dt} $
Further expanding it,
$ \Rightarrow \vec v = {\vec v_0}\left( {1 - \dfrac{t}{\tau }} \right)$
Where
$ \Rightarrow {v_x} = {v_0}\left( {1 - \dfrac{t}{\tau }} \right)$
From the above two-equation,
$ \Rightarrow x = \int {{v_0}} \left( {1 - \dfrac{t}{\tau }} \right)dt = {v_0}t\left( {1 - \dfrac{t}{{2\pi }}} \right)$
Hence X coordinate of the particle at $t = 6s$
$ \Rightarrow x = 10 \times 6\left( {1 - \dfrac{6}{{2 \times 5}}} \right)$
On solving the above, we get
$ \Rightarrow 24cm = 0.24m$
Similarly at $t = 10s$
$ \Rightarrow x = 10 \times 10\left( {1 - \dfrac{{10}}{{2 \times 5}}} \right)$
$ \Rightarrow 0m$
Now at $t = 20s$
$ \Rightarrow x = 10 \times 20\left( {1 - \dfrac{{20}}{{2 \times 5}}} \right)$
Further on solving,
$ \Rightarrow - 200cm = - 2m$
$\left( b \right)$. At the moment the particle is at a distance of $10cm$ from the origin,
$ \Rightarrow x = \pm 10cm$
Putting $ \Rightarrow x = \pm 10cm$in the above equation
$ \Rightarrow 10 = 10t\left( {1 - \dfrac{t}{{10}}} \right)$
On simplifying
$ \Rightarrow {t^2} - 10t + 10 = 0$
Now we will find the value of $t$ from here.
$ \Rightarrow t = \dfrac{{10 \pm \sqrt {100 - 40} }}{2}$
On simplifying,
$ \Rightarrow 5 \pm \sqrt {15} s$
Now putting $x = - 10$
We get,
$ \Rightarrow - 10 = 10\left( {1 - \dfrac{t}{{10}}} \right)$
On solving,
$ \Rightarrow t = 5 \pm \sqrt {35s} $
As t cannot be negative, so
$ \Rightarrow t = 5 + \sqrt {35s} $
So the particle is at the following time at three intervals:
$t = 5 + \sqrt {35s} $,$5 \pm \sqrt {15} s$.
$\left( c \right)$. We have
$ \Rightarrow \vec v = {\vec v_0}\left( {1 - \dfrac{t}{\tau }} \right)$
So, $v = \left| {\vec v} \right| = {v_0}\left( {1 - \dfrac{t}{\tau }} \right){\text{ for t}} \leqslant \tau $
And
$ \Rightarrow v = \left| {\vec v} \right| = {v_0}\left( {\dfrac{t}{\tau } - 1} \right){\text{ for t > }}\tau $
Therefore,
$ \Rightarrow s = \int_0^t {{v_0}} \left( {1 - \dfrac{t}{\tau }} \right)dt$ For ${\text{t}} \leqslant \tau = {v_0}t\left( {1 - \dfrac{t}{{2\pi }}} \right)$
And
$ \Rightarrow {v_0}\tau \left[ {1 + {{\left( {1 - \dfrac{t}{\tau }} \right)}^2}} \right]/2$ for $t > \tau \left( A \right)$
Now we will solve the integration,
$ \Rightarrow s = \int_0^4 {{v_0}} \left( {1 - \dfrac{t}{\tau }} \right)dt$
Putting the required value, we get
$ \Rightarrow s = \int_0^4 {10} \left( {1 - \dfrac{t}{5}} \right)dt$
$ \Rightarrow 24cm$
And for $t = 8s$
$ \Rightarrow s = \int_0^5 {10} \left( {1 - \dfrac{t}{5}} \right)dt + \int_5^8 {10} \left( {\dfrac{t}{5} - 1} \right)dt$
On integrating and simplifying, we get
$ \Rightarrow s = 34cm$
Based on the above equations. Graph plot can be drawn as shown below
Note: Speed and velocity is a touch confusing for many people. Well, the distinction between speed and velocity is that speed offers us a plan of how briskly an object is moving whereas velocity not solely tells us its speed however additionally tells us the direction the body is taking possession. We can outline speed as a function of distance traveled whereas velocity could be a performance of displacement.
Complete step by step solution:
$\left( a \right)$As the particles leaving the origin at $t = 0$
So,
$ \Rightarrow \vartriangle x = x - \int {{v_x}dt} $
Further expanding it,
$ \Rightarrow \vec v = {\vec v_0}\left( {1 - \dfrac{t}{\tau }} \right)$
Where
$ \Rightarrow {v_x} = {v_0}\left( {1 - \dfrac{t}{\tau }} \right)$
From the above two-equation,
$ \Rightarrow x = \int {{v_0}} \left( {1 - \dfrac{t}{\tau }} \right)dt = {v_0}t\left( {1 - \dfrac{t}{{2\pi }}} \right)$
Hence X coordinate of the particle at $t = 6s$
$ \Rightarrow x = 10 \times 6\left( {1 - \dfrac{6}{{2 \times 5}}} \right)$
On solving the above, we get
$ \Rightarrow 24cm = 0.24m$
Similarly at $t = 10s$
$ \Rightarrow x = 10 \times 10\left( {1 - \dfrac{{10}}{{2 \times 5}}} \right)$
$ \Rightarrow 0m$
Now at $t = 20s$
$ \Rightarrow x = 10 \times 20\left( {1 - \dfrac{{20}}{{2 \times 5}}} \right)$
Further on solving,
$ \Rightarrow - 200cm = - 2m$
$\left( b \right)$. At the moment the particle is at a distance of $10cm$ from the origin,
$ \Rightarrow x = \pm 10cm$
Putting $ \Rightarrow x = \pm 10cm$in the above equation
$ \Rightarrow 10 = 10t\left( {1 - \dfrac{t}{{10}}} \right)$
On simplifying
$ \Rightarrow {t^2} - 10t + 10 = 0$
Now we will find the value of $t$ from here.
$ \Rightarrow t = \dfrac{{10 \pm \sqrt {100 - 40} }}{2}$
On simplifying,
$ \Rightarrow 5 \pm \sqrt {15} s$
Now putting $x = - 10$
We get,
$ \Rightarrow - 10 = 10\left( {1 - \dfrac{t}{{10}}} \right)$
On solving,
$ \Rightarrow t = 5 \pm \sqrt {35s} $
As t cannot be negative, so
$ \Rightarrow t = 5 + \sqrt {35s} $
So the particle is at the following time at three intervals:
$t = 5 + \sqrt {35s} $,$5 \pm \sqrt {15} s$.
$\left( c \right)$. We have
$ \Rightarrow \vec v = {\vec v_0}\left( {1 - \dfrac{t}{\tau }} \right)$
So, $v = \left| {\vec v} \right| = {v_0}\left( {1 - \dfrac{t}{\tau }} \right){\text{ for t}} \leqslant \tau $
And
$ \Rightarrow v = \left| {\vec v} \right| = {v_0}\left( {\dfrac{t}{\tau } - 1} \right){\text{ for t > }}\tau $
Therefore,
$ \Rightarrow s = \int_0^t {{v_0}} \left( {1 - \dfrac{t}{\tau }} \right)dt$ For ${\text{t}} \leqslant \tau = {v_0}t\left( {1 - \dfrac{t}{{2\pi }}} \right)$
And
$ \Rightarrow {v_0}\tau \left[ {1 + {{\left( {1 - \dfrac{t}{\tau }} \right)}^2}} \right]/2$ for $t > \tau \left( A \right)$
Now we will solve the integration,
$ \Rightarrow s = \int_0^4 {{v_0}} \left( {1 - \dfrac{t}{\tau }} \right)dt$
Putting the required value, we get
$ \Rightarrow s = \int_0^4 {10} \left( {1 - \dfrac{t}{5}} \right)dt$
$ \Rightarrow 24cm$
And for $t = 8s$
$ \Rightarrow s = \int_0^5 {10} \left( {1 - \dfrac{t}{5}} \right)dt + \int_5^8 {10} \left( {\dfrac{t}{5} - 1} \right)dt$
On integrating and simplifying, we get
$ \Rightarrow s = 34cm$
Based on the above equations. Graph plot can be drawn as shown below
Note: Speed and velocity is a touch confusing for many people. Well, the distinction between speed and velocity is that speed offers us a plan of how briskly an object is moving whereas velocity not solely tells us its speed however additionally tells us the direction the body is taking possession. We can outline speed as a function of distance traveled whereas velocity could be a performance of displacement.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids