
Brine solution on electrolysis will give:
(A) $NaOH$
(B) ${{O}_{2}}$
(C) $C{{l}_{2}}$
(D) ${{H}_{2}}$
Answer
225.9k+ views
HINT: Brine solution refers to the high concentration of salt (NaCl) in water (H2O). Electrolysis is the process in which ionic substances are broken into simpler substances when an electric current is passed through it.
Complete step by step solution:
Brine solutions have the composition of sodium chloride (NaCl) and water (H2O). Other useful chemicals which we will get in this process, sodium hydroxide (NaOH) and hydrogen (H2). The chlorine and sodium hydroxide produced in the process have to be separated in the reaction when they come in contact with each other.
As we know electrolysis is done on the two electrodes which are cathode electrode and the anode electrode.
-Electrolysis on the negative cathode electrode
The negative cathode attracts the Na+ (from sodium chloride) and H+ ions (from water). The only ions discharged at the cathode are Hydrogen ions. More is the reactivity of the metal is, the less readily there is the presence of reduced ions on the electrode surface. Hydrogen ions get reduced by gaining electrons and give hydrogen molecules at the negative electrode which attracts positive ions towards itself.
$2H+\left( aq \right)+2{{\text{e}}^{-}}\to {{H}_{2}}\left( g \right)$
Other equations:
$2{{H}_{2}}O+2{{\text{e}}^{-}}\to {{H}_{2}}\left( g \right)+20{{H}^{-}}\left( aq \right)$
-Electrolysis on the positive anode electrode
The positively charged anode attracts the negative hydroxide OH ions (from water) and chloride Cl ions (from sodium chloride) towards itself. The chloride ion only is discharged in significant quantities during the process which means that it is preferentially oxidized to chlorine.
The chloride ions are oxidized by electron loss to offer chlorine molecules at the positive electrode which attracts negative ions.
\[C{{l}_{2}}\to 2C{{l}^{}}+2{{e}^{-}}\]
The hydroxide ion, with the uncharged sodium ion, from
\[N{{a}^{+}}+OH\to NaOH\]
Thereby, the answer to the above multiple questions is:
\[NaOH,\ C{{l}_{2}},\ {{H}_{2}}\]
As all three options (A), (C) and (D) are answers to this question and given out in the process of brine electrolysis.
Note:-Electrolysis is where ionic compounds are separated to form simple compounds.
-Electrolysis works only if the compound contains ions. Covalent compounds cannot behave as electrolytes because they contain natural atoms in it, these atoms are joined together by covalent bonds rather than ionic bonds.
Complete step by step solution:
Brine solutions have the composition of sodium chloride (NaCl) and water (H2O). Other useful chemicals which we will get in this process, sodium hydroxide (NaOH) and hydrogen (H2). The chlorine and sodium hydroxide produced in the process have to be separated in the reaction when they come in contact with each other.
As we know electrolysis is done on the two electrodes which are cathode electrode and the anode electrode.
-Electrolysis on the negative cathode electrode
The negative cathode attracts the Na+ (from sodium chloride) and H+ ions (from water). The only ions discharged at the cathode are Hydrogen ions. More is the reactivity of the metal is, the less readily there is the presence of reduced ions on the electrode surface. Hydrogen ions get reduced by gaining electrons and give hydrogen molecules at the negative electrode which attracts positive ions towards itself.
$2H+\left( aq \right)+2{{\text{e}}^{-}}\to {{H}_{2}}\left( g \right)$
Other equations:
$2{{H}_{2}}O+2{{\text{e}}^{-}}\to {{H}_{2}}\left( g \right)+20{{H}^{-}}\left( aq \right)$
-Electrolysis on the positive anode electrode
The positively charged anode attracts the negative hydroxide OH ions (from water) and chloride Cl ions (from sodium chloride) towards itself. The chloride ion only is discharged in significant quantities during the process which means that it is preferentially oxidized to chlorine.
The chloride ions are oxidized by electron loss to offer chlorine molecules at the positive electrode which attracts negative ions.
\[C{{l}_{2}}\to 2C{{l}^{}}+2{{e}^{-}}\]
The hydroxide ion, with the uncharged sodium ion, from
\[N{{a}^{+}}+OH\to NaOH\]
Thereby, the answer to the above multiple questions is:
\[NaOH,\ C{{l}_{2}},\ {{H}_{2}}\]
As all three options (A), (C) and (D) are answers to this question and given out in the process of brine electrolysis.
Note:-Electrolysis is where ionic compounds are separated to form simple compounds.
-Electrolysis works only if the compound contains ions. Covalent compounds cannot behave as electrolytes because they contain natural atoms in it, these atoms are joined together by covalent bonds rather than ionic bonds.
Recently Updated Pages
JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Organic Compounds Containing Nitrogen Mock Test

JEE Main Chemical Kinetics Mock Test 2025-26: Free Practice Online

JEE Main 2025-26 Organic Compounds Containing Oxygen Mock Test

JEE Main 2025-26 Organic Compounds Containing Halogens Mock Test

Sodium acetate on heating with soda lime produce A class 12 chemistry JEE_Main

Trending doubts
Understanding Atomic Structure for Beginners

Understanding Average and RMS Value in Electrical Circuits

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding How a Current Loop Acts as a Magnetic Dipole

Class 12 Chemistry Mock Test Series – Practice Online for JEE Main & Boards

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Which of the following will not undergo H V Z reaction class 12 chemistry JEE_Main

JEE Main 2023 April 13 Shift 2 Question Paper with Answer Keys & Solutions

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

