
Calculate the decrease in kinetic energy of a moving body if its velocity reduces to half of the initial velocity.
Answer
139.8k+ views
Hint: To find the change in kinetic energy , we need to find the kinetic energy for given two situations separately. The kinetic energy of a moving object is related to its mass and velocity by the formula
${\text{K}}{\text{.E = }}\dfrac{1}{2}m{v^2}$
Complete step by step solution:
We know for kinetic energy, body must have velocity
Let initial velocity = v
$\eqalign{
& {\text{Also Kinetic energy is equal to}} \cr
& {\text{K}}{\text{.E}}{\text{. = }}\dfrac{1}{2}m{v^2} \cr
& {\text{given velocity decreased to half , so new velocity v'}} \cr
& {\text{v' = }}\dfrac{v}{2} \cr
& \Rightarrow {\text{K}}{\text{.}}{{\text{E}}_{new}} = {\text{ }}\dfrac{1}{2}m \times {\text{ (}}\dfrac{v}{2}{{\text{)}}^2} \cr
& \Rightarrow {\text{K}}{\text{.}}{{\text{E}}_{new}}{\text{ = }}\dfrac{1}{2}m\dfrac{{{v^2}}}{4} \cr
& \therefore {\text{K}}{\text{.}}{{\text{E}}_{new}}{\text{ = }}\dfrac{{m{v^2}}}{8} \cr
& {\text{Now as asked we need to find the decrease}} \cr
& \Delta {\text{K}}{\text{.E = }}\dfrac{{m{v^2}}}{2}{\text{ - }}\dfrac{{m{v^2}}}{8}{\text{ }} \cr
& \therefore \Delta {\text{K}}{\text{.E = }}\dfrac{3}{4}m{v^2} \cr
& {\text{Kinetic energy will decrease by }}\dfrac{3}{4}th{\text{ of initial kinetic energy}} \cr} $.
Additional information: Although the concept of kinetic energy dates back to the days of Aristotle, Lord Kelvin is first credited with using the term around 1849. Kinetic energy, the form of energy that is caused by the motion of an object or particle. If work, which transfers energy, is done by applying a net force on an object, the object moves and from which kinetic energy is obtained. The kinetic energy is the property of a moving object or particle also depends not only on the speed but also on the mass. The type of movement can be translation (or movement along a path from one place to another), moving around a spindle, vibration or any combination of movements.
There are two main types of kinetic energy: translational and rotational. The translational kinetic energy depends on the motion through space, and the rotational kinetic energy depends on the motion centered on the axis.
Note: The kinetic energy for any moving object can be calculated as long as the mass and speed of the objects are known. The unit used to measure kinetic energy is called Joule. If there are units of kilograms in mass and speed of meters per second, then kinetic energy consists of units of square-kilograms-kilograms per second.
${\text{K}}{\text{.E = }}\dfrac{1}{2}m{v^2}$
Complete step by step solution:
We know for kinetic energy, body must have velocity
Let initial velocity = v
$\eqalign{
& {\text{Also Kinetic energy is equal to}} \cr
& {\text{K}}{\text{.E}}{\text{. = }}\dfrac{1}{2}m{v^2} \cr
& {\text{given velocity decreased to half , so new velocity v'}} \cr
& {\text{v' = }}\dfrac{v}{2} \cr
& \Rightarrow {\text{K}}{\text{.}}{{\text{E}}_{new}} = {\text{ }}\dfrac{1}{2}m \times {\text{ (}}\dfrac{v}{2}{{\text{)}}^2} \cr
& \Rightarrow {\text{K}}{\text{.}}{{\text{E}}_{new}}{\text{ = }}\dfrac{1}{2}m\dfrac{{{v^2}}}{4} \cr
& \therefore {\text{K}}{\text{.}}{{\text{E}}_{new}}{\text{ = }}\dfrac{{m{v^2}}}{8} \cr
& {\text{Now as asked we need to find the decrease}} \cr
& \Delta {\text{K}}{\text{.E = }}\dfrac{{m{v^2}}}{2}{\text{ - }}\dfrac{{m{v^2}}}{8}{\text{ }} \cr
& \therefore \Delta {\text{K}}{\text{.E = }}\dfrac{3}{4}m{v^2} \cr
& {\text{Kinetic energy will decrease by }}\dfrac{3}{4}th{\text{ of initial kinetic energy}} \cr} $.
Additional information: Although the concept of kinetic energy dates back to the days of Aristotle, Lord Kelvin is first credited with using the term around 1849. Kinetic energy, the form of energy that is caused by the motion of an object or particle. If work, which transfers energy, is done by applying a net force on an object, the object moves and from which kinetic energy is obtained. The kinetic energy is the property of a moving object or particle also depends not only on the speed but also on the mass. The type of movement can be translation (or movement along a path from one place to another), moving around a spindle, vibration or any combination of movements.
There are two main types of kinetic energy: translational and rotational. The translational kinetic energy depends on the motion through space, and the rotational kinetic energy depends on the motion centered on the axis.
Note: The kinetic energy for any moving object can be calculated as long as the mass and speed of the objects are known. The unit used to measure kinetic energy is called Joule. If there are units of kilograms in mass and speed of meters per second, then kinetic energy consists of units of square-kilograms-kilograms per second.
Recently Updated Pages
Average fee range for JEE coaching in India- Complete Details

Difference Between Rows and Columns: JEE Main 2024

Difference Between Length and Height: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

Algebraic Formula

Difference Between Constants and Variables: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
