
Calculate the density of diamond from the fact that it has a face-centered cubic structure with two atoms per lattice point and unit cell edge length of 3.569 $\times 10^{ -8 }$ cm.
(A) 3.509 $g/cm^{ 3 }$
(B) 7.012 $g/cm^{ 3 }$
(C) 10.12 $g/cm^{ 3 }$
(D) None of the above
Answer
221.7k+ views
Hint: To answer this question you should recall the formula for calculation of density of a lattice from the solid-state. Here the number of atoms in one face-centered lattice will be four. Now arrange these values in the formula to answer this question.
Complete step by step answer:
Let’s find the correct answer to this question -
The formula for the calculation of density can be written as,
$\rho (density) = \dfrac { Z \times M }{ { N }_{ 0} \times a^{ 3 } } $
Where,
Z = number of atoms in a unit cell
M = molecular mass of an atom (in grams)
${ N }_{ 0 }$ = Avogadro number
$a$ = unit cell edge length (in cm)
We have the following values,
Z = 4 $\times$ 2 = 8 (because one lattice point has two atoms in fcc unit cell)
M = 12 g (atomic mass of carbon)
${ N }_{0 }$ = 6.022 $ \times 10^{ 23 }$
$a$ = 3.569 $\times 10^{ -8 }$ cm
Now, we will put all these values in the equation of density,
$\rho = \dfrac { 8 \times 12g }{ 6.022\times { 10 }^{ 23 } \times 3.569\times { 10 }^{ -8 }cm)^{ 3 } }$
$\rho = \dfrac { 96g }{ 27.4 { cm }^{ 3 } } $
$\rho = 3.509 g/{ cm }^{ 3 }$
Therefore, we can conclude that the correct answer to this question is option A.
Note: We should know that the diamond lattice (formed by the carbon atoms in a diamond crystal) consists of two interpenetrating face-centered cubic Bravais lattices, displaced along the body diagonal of the cubic cell by one quarter the length of the diagonal.
Complete step by step answer:
Let’s find the correct answer to this question -
The formula for the calculation of density can be written as,
$\rho (density) = \dfrac { Z \times M }{ { N }_{ 0} \times a^{ 3 } } $
Where,
Z = number of atoms in a unit cell
M = molecular mass of an atom (in grams)
${ N }_{ 0 }$ = Avogadro number
$a$ = unit cell edge length (in cm)
We have the following values,
Z = 4 $\times$ 2 = 8 (because one lattice point has two atoms in fcc unit cell)
M = 12 g (atomic mass of carbon)
${ N }_{0 }$ = 6.022 $ \times 10^{ 23 }$
$a$ = 3.569 $\times 10^{ -8 }$ cm
Now, we will put all these values in the equation of density,
$\rho = \dfrac { 8 \times 12g }{ 6.022\times { 10 }^{ 23 } \times 3.569\times { 10 }^{ -8 }cm)^{ 3 } }$
$\rho = \dfrac { 96g }{ 27.4 { cm }^{ 3 } } $
$\rho = 3.509 g/{ cm }^{ 3 }$
Therefore, we can conclude that the correct answer to this question is option A.
Note: We should know that the diamond lattice (formed by the carbon atoms in a diamond crystal) consists of two interpenetrating face-centered cubic Bravais lattices, displaced along the body diagonal of the cubic cell by one quarter the length of the diagonal.
Recently Updated Pages
JEE Main 2022 (July 26th Shift 1) Physics Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Chemistry Question Paper with Answer Key

Apparent Frequency Explained: Formula, Uses & Examples

JEE Main 2023 (January 30th Shift 2) Chemistry Question Paper with Answer Key

Displacement Current and Maxwell’s Equations Explained

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

