
Choose the correct statement(s).
A. A dimensionally correct equation must be correct.
B. A dimensionally correct equation may be correct.
C. A dimensionally incorrect equation must be incorrect.
D. A dimensionally incorrect equation may be correct.
Answer
232.8k+ views
Hint: In this question, we need to determine the correct option(s) out of the given options. For this, we will be using the principle of homogeneity of dimension to identify the correct statement(s).
Complete step by step solution:
First, we will discuss the concept of dimensional equations. Dimensional equations are equations that include physical quantities and dimensional formulas.
Let us now look at the dimensional homogeneity principle. An equation is practically valid when it becomes dimensionally correct, according to the concept of dimension homogeneity.That means that the dimensions of every term in a dimensional equation on both sides should be the same.
So when the equation is dimensionally inaccurate, it will be physically incorrect. Therefore, statements like “A dimensionally correct equation may be correct” and “A dimensionally incorrect equation may be correct” are correct.
Hence, the options (B) and (D) are correct.
Additional Information: The analysis of the relationship between physical quantities based on their units as well as dimensions is known as dimensional analysis. That is, it is a methodology in which physical values are described in terms of their basic dimensions, frequently utilised whenever there is insufficient data to draw up accurate equations.
Note:We can also identify correct statements by taking examples. The example of statement (b) is \[s = ut + a{t^2}\]. This equation is dimensionally correct but actually it is incorrect. Also, the example of statement (d) is \[s = u + \dfrac{a}{2}\left( {2n - 1}
\right)\]. This equation is correct but dimensionally incorrect.
Complete step by step solution:
First, we will discuss the concept of dimensional equations. Dimensional equations are equations that include physical quantities and dimensional formulas.
Let us now look at the dimensional homogeneity principle. An equation is practically valid when it becomes dimensionally correct, according to the concept of dimension homogeneity.That means that the dimensions of every term in a dimensional equation on both sides should be the same.
So when the equation is dimensionally inaccurate, it will be physically incorrect. Therefore, statements like “A dimensionally correct equation may be correct” and “A dimensionally incorrect equation may be correct” are correct.
Hence, the options (B) and (D) are correct.
Additional Information: The analysis of the relationship between physical quantities based on their units as well as dimensions is known as dimensional analysis. That is, it is a methodology in which physical values are described in terms of their basic dimensions, frequently utilised whenever there is insufficient data to draw up accurate equations.
Note:We can also identify correct statements by taking examples. The example of statement (b) is \[s = ut + a{t^2}\]. This equation is dimensionally correct but actually it is incorrect. Also, the example of statement (d) is \[s = u + \dfrac{a}{2}\left( {2n - 1}
\right)\]. This equation is correct but dimensionally incorrect.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

