
Consider a spherical drop of radius R. Surface tension of the liquid is S. Force of the surface tension on the shaded sub hemisphere due to remaining drop is $\dfrac{{S\pi R}}{2}$. The value of angle $\theta $ (angle subtended by the sub hemisphere at centre of drop) is

(A) $60^\circ $
(B) $120^\circ $
(C) $30^\circ $
(D) $90^\circ $
Answer
127.5k+ views
Hint We are provided with the force of the surface tension on the shaded sub hemisphere due to the remaining drop being $\dfrac{{S\pi R}}{2}$. We can understand that statement from the diagram in the question. We have to find the angle subtended by the sub hemisphere at centre of drop. Use the surface tension formula to find the angle. Since the given surface is a sphere its radius makes an angle with the centre point. Use the given diagram for better understanding.
Complete step by step answer
Surface tension: The tendency of surfaces to shrink into the possible minimum surface area. The surface tension is the force per unit length of the surface. Surface area of an object is given by
$ \Rightarrow \gamma = \dfrac{F}{l}$
$\gamma $ is the surface tension
F is the force
L is the unit length
Given,
The radius of a spherical drop is R
Surface tension of the liquid is S
Force of the surface tension on the shaded sub hemisphere due to remaining drop is $F = \dfrac{{S\pi R}}{2}$.
Angle subtended by the sub hemisphere at centre of drop $\theta = ?$

We know that
$ \Rightarrow \gamma = \dfrac{F}{l}$
$ \Rightarrow F = \gamma \times l$
Substituting the known values,
$ \Rightarrow F = \gamma \times l$
$ \Rightarrow F = S \times 2\pi R$
From the diagram
$ \Rightarrow F = S \times 2\pi R\sin \dfrac{\theta }{2}{\text{ }} \to {\text{1}}$
From the diagram,
All the horizontal components of the force get cancelled.
The net force by vertical component of force
$ \Rightarrow F = F\sin \dfrac{\theta }{2}$
Given $F = \dfrac{{S\pi R}}{2}$
$ \Rightarrow \dfrac{{S\pi R}}{2} = F\sin \dfrac{\theta }{2}$
From equation 1
$ \Rightarrow \dfrac{{S\pi R}}{2} = S \times 2\pi R\sin \dfrac{\theta }{2} \times \sin \dfrac{\theta }{2}$
$ \Rightarrow \dfrac{{S\pi R}}{2} = S \times 2\pi R{\sin ^2}\dfrac{\theta }{2}$
\[ \Rightarrow \dfrac{1}{2} = \times 2{\sin ^2}\dfrac{\theta }{2}\]
\[ \Rightarrow {\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{4}\]
Taking square root
\[ \Rightarrow \sin \dfrac{\theta }{2} = \dfrac{1}{2}\]
\[ \Rightarrow \dfrac{\theta }{2} = {\sin ^{ - 1}}\dfrac{1}{2}\]
\[ \Rightarrow \dfrac{\theta }{2} = 30^\circ \]
\[ \Rightarrow \theta = 60^\circ \]
Angle subtended by the sub hemisphere at centre of drop, \[\theta = 60^\circ \]
Hence the correct answer is option (A) \[60^\circ \]
Note We can notice that we have used $2\pi R$ in place of L while solving. Surface tension is the force per unit length. Here we are provided with a sphere. To find the surface tension on the sphere we have to use the circumference of the sphere. Circumference of the sphere is $2\pi R$.
Complete step by step answer
Surface tension: The tendency of surfaces to shrink into the possible minimum surface area. The surface tension is the force per unit length of the surface. Surface area of an object is given by
$ \Rightarrow \gamma = \dfrac{F}{l}$
$\gamma $ is the surface tension
F is the force
L is the unit length
Given,
The radius of a spherical drop is R
Surface tension of the liquid is S
Force of the surface tension on the shaded sub hemisphere due to remaining drop is $F = \dfrac{{S\pi R}}{2}$.
Angle subtended by the sub hemisphere at centre of drop $\theta = ?$

We know that
$ \Rightarrow \gamma = \dfrac{F}{l}$
$ \Rightarrow F = \gamma \times l$
Substituting the known values,
$ \Rightarrow F = \gamma \times l$
$ \Rightarrow F = S \times 2\pi R$
From the diagram
$ \Rightarrow F = S \times 2\pi R\sin \dfrac{\theta }{2}{\text{ }} \to {\text{1}}$
From the diagram,
All the horizontal components of the force get cancelled.
The net force by vertical component of force
$ \Rightarrow F = F\sin \dfrac{\theta }{2}$
Given $F = \dfrac{{S\pi R}}{2}$
$ \Rightarrow \dfrac{{S\pi R}}{2} = F\sin \dfrac{\theta }{2}$
From equation 1
$ \Rightarrow \dfrac{{S\pi R}}{2} = S \times 2\pi R\sin \dfrac{\theta }{2} \times \sin \dfrac{\theta }{2}$
$ \Rightarrow \dfrac{{S\pi R}}{2} = S \times 2\pi R{\sin ^2}\dfrac{\theta }{2}$
\[ \Rightarrow \dfrac{1}{2} = \times 2{\sin ^2}\dfrac{\theta }{2}\]
\[ \Rightarrow {\sin ^2}\dfrac{\theta }{2} = \dfrac{1}{4}\]
Taking square root
\[ \Rightarrow \sin \dfrac{\theta }{2} = \dfrac{1}{2}\]
\[ \Rightarrow \dfrac{\theta }{2} = {\sin ^{ - 1}}\dfrac{1}{2}\]
\[ \Rightarrow \dfrac{\theta }{2} = 30^\circ \]
\[ \Rightarrow \theta = 60^\circ \]
Angle subtended by the sub hemisphere at centre of drop, \[\theta = 60^\circ \]
Hence the correct answer is option (A) \[60^\circ \]
Note We can notice that we have used $2\pi R$ in place of L while solving. Surface tension is the force per unit length. Here we are provided with a sphere. To find the surface tension on the sphere we have to use the circumference of the sphere. Circumference of the sphere is $2\pi R$.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
