Consider a system of two identical particles. One of the particles is at rest and the other has an acceleration a. The centre of mass has an acceleration
A) Zero
B) \[\dfrac{a}{2}\]
C) a
D) 2a
Answer
Verified
116.7k+ views
Hint: Before proceeding with the solution of the given problem, let us discuss the centre of mass in brief. The centre of mass is a position defined relative to an object or system of objects. It is the average position of all the parts of the system, weighted according to their masses. For simple rigid objects with uniform density, the centre of mass is located at the centroid.
Formula Used:
\[{{a}_{CM}}=\dfrac{{{m}_{1}}{{a}_{1}}+{{m}_{2}}{{a}_{2}}+.......+{{m}_{n}}{{a}_{n}}}{{{m}_{1}}+{{m}_{2}}+.......+{{m}_{n}}}\]
Complete step by step solution:
Let the acceleration of the centre of mass of the two particles be \[{{a}_{CM}}\].
From the concept of the acceleration of the mass, we can say that the acceleration of the centre of mass is equal to the ratio of the sum of the product of individual masses and their accelerations to the sum of the masses.
Mathematically, we can express this as \[{{a}_{CM}}=\dfrac{{{m}_{1}}{{a}_{1}}+{{m}_{2}}{{a}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]
Now, we have been told that the particles are identical; this means that the mass of both the particles is same, that is \[{{m}_{1}}={{m}_{2}}=m\]
Substituting this in the expression for the acceleration of the centre of mass, we get
\[{{a}_{CM}}=\dfrac{m({{a}_{1}}+{{a}_{2}})}{2m}\]
Further simplifying this equation, we get
\[{{a}_{CM}}=\dfrac{({{a}_{1}}+{{a}_{2}})}{2}\]
We have been told that one of the particles is at rest. This means that the acceleration of this particle will be zero, that is \[{{a}_{1}}=0\]. The acceleration of the other particle has been given as a.
Substituting the values of the acceleration, we get
\[{{a}_{CM}}=\dfrac{(0+a)}{2}=\dfrac{a}{2}\]
Hence the acceleration of the centre of mass of the system of particles will be \[\dfrac{a}{2}\].
Note: We have to keep an eye out for terms that might help us. For example, the word identical tells us that the masses of the particles are the same. For this, a keen reading of the question is needed. The centre of mass is a useful reference point for calculations in mechanics that involve masses distributed in space, such as the linear and angular momentum of planetary bodies and rigid body dynamics. In orbital mechanics, the equations of motion of planets are formulated as point masses located at the centres of mass.
Formula Used:
\[{{a}_{CM}}=\dfrac{{{m}_{1}}{{a}_{1}}+{{m}_{2}}{{a}_{2}}+.......+{{m}_{n}}{{a}_{n}}}{{{m}_{1}}+{{m}_{2}}+.......+{{m}_{n}}}\]
Complete step by step solution:
Let the acceleration of the centre of mass of the two particles be \[{{a}_{CM}}\].
From the concept of the acceleration of the mass, we can say that the acceleration of the centre of mass is equal to the ratio of the sum of the product of individual masses and their accelerations to the sum of the masses.
Mathematically, we can express this as \[{{a}_{CM}}=\dfrac{{{m}_{1}}{{a}_{1}}+{{m}_{2}}{{a}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]
Now, we have been told that the particles are identical; this means that the mass of both the particles is same, that is \[{{m}_{1}}={{m}_{2}}=m\]
Substituting this in the expression for the acceleration of the centre of mass, we get
\[{{a}_{CM}}=\dfrac{m({{a}_{1}}+{{a}_{2}})}{2m}\]
Further simplifying this equation, we get
\[{{a}_{CM}}=\dfrac{({{a}_{1}}+{{a}_{2}})}{2}\]
We have been told that one of the particles is at rest. This means that the acceleration of this particle will be zero, that is \[{{a}_{1}}=0\]. The acceleration of the other particle has been given as a.
Substituting the values of the acceleration, we get
\[{{a}_{CM}}=\dfrac{(0+a)}{2}=\dfrac{a}{2}\]
Hence the acceleration of the centre of mass of the system of particles will be \[\dfrac{a}{2}\].
Note: We have to keep an eye out for terms that might help us. For example, the word identical tells us that the masses of the particles are the same. For this, a keen reading of the question is needed. The centre of mass is a useful reference point for calculations in mechanics that involve masses distributed in space, such as the linear and angular momentum of planetary bodies and rigid body dynamics. In orbital mechanics, the equations of motion of planets are formulated as point masses located at the centres of mass.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids