Answer
Verified
112.8k+ views
Hint: The region around a charged particle where other charged particles experience a force is known as the electric field. We can find the magnitude of electric field intensity from the electric field intensity vector(E) and then by substituting the value in the formula, the net flux will be obtained.
Formula Used:
Area of the square (A) = ${({\text{Side}})^2}$
Flux $(\Phi ) = \left| {\overrightarrow {\text{E}} } \right| \times {\text{A}} \times \cos \theta $
Complete step by step solution:
Electric field intensity (E) = ${\text{3}} \times {\text{1}}{{\text{0}}^3}{{\hat iN}}{{\text{C}}^{ - 1}}$
Magnitude of electric field intensity \[ = \left| {\overrightarrow {\text{E}} } \right| = \left| {{\text{3}} \times {\text{1}}{{\text{0}}^3}\hat i} \right| = \sqrt {{{({\text{3}} \times {\text{1}}{{\text{0}}^3})}^2}} = {\text{3}} \times {\text{1}}{{\text{0}}^3}{\text{ N/C}}\]
Side of the cube (s) = $20{\text{cm = 0}}{\text{.2m}}$ [$1{\text{m = 100cm}}$]
The electric field lines are passing in the x-direction, so the lines will pass through one of the sides of the cube and leaves through the opposite side of the cube. To obtain net flux we should calculate the flux through these sides of the cube which are squares.
We can calculate the area of the square by using the formula
Area of the square (A) = ${({\text{Side}})^2}$
$ \Rightarrow {\text{A}} = {\text{ (0}}{\text{.2}}{{\text{)}}^2} = {\text{ 0}}{\text{.04}}{{\text{m}}^2}$
Net flux can be calculated by using the formula
Flux $(\Phi ) = \left| {\overrightarrow {\text{E}} } \right| \times {\text{A}} \times \cos \theta $
As the sides of the cube are parallel to the coordinate axis, the angle between the electric field lines and normal to the surface will be $0^\circ $
Now, by substituting the values of electric field intensity, area of the square and $\theta $ in the above formula, we get
$ \Rightarrow \Phi = 3 \times {10^3} \times 0.04 \times {\text{cos(0)}}^\circ $
$ \Rightarrow \Phi = 0.12 \times {10^3} \times 1$
On further calculation, we get
$ \Rightarrow \Phi = 120{\text{N}}{{\text{m}}^2}{\text{/C}}$
Therefore, The net flux through the cube is $120{\text{N}}{{\text{m}}^2}{\text{/C}}.$
Note: While doing the calculation, all the quantities should be in the same unit. The given value of the side of the cube is in centimetres, so convert it into meters before calculating the area of the square.
Formula Used:
Area of the square (A) = ${({\text{Side}})^2}$
Flux $(\Phi ) = \left| {\overrightarrow {\text{E}} } \right| \times {\text{A}} \times \cos \theta $
Complete step by step solution:
Electric field intensity (E) = ${\text{3}} \times {\text{1}}{{\text{0}}^3}{{\hat iN}}{{\text{C}}^{ - 1}}$
Magnitude of electric field intensity \[ = \left| {\overrightarrow {\text{E}} } \right| = \left| {{\text{3}} \times {\text{1}}{{\text{0}}^3}\hat i} \right| = \sqrt {{{({\text{3}} \times {\text{1}}{{\text{0}}^3})}^2}} = {\text{3}} \times {\text{1}}{{\text{0}}^3}{\text{ N/C}}\]
Side of the cube (s) = $20{\text{cm = 0}}{\text{.2m}}$ [$1{\text{m = 100cm}}$]
The electric field lines are passing in the x-direction, so the lines will pass through one of the sides of the cube and leaves through the opposite side of the cube. To obtain net flux we should calculate the flux through these sides of the cube which are squares.
We can calculate the area of the square by using the formula
Area of the square (A) = ${({\text{Side}})^2}$
$ \Rightarrow {\text{A}} = {\text{ (0}}{\text{.2}}{{\text{)}}^2} = {\text{ 0}}{\text{.04}}{{\text{m}}^2}$
Net flux can be calculated by using the formula
Flux $(\Phi ) = \left| {\overrightarrow {\text{E}} } \right| \times {\text{A}} \times \cos \theta $
As the sides of the cube are parallel to the coordinate axis, the angle between the electric field lines and normal to the surface will be $0^\circ $
Now, by substituting the values of electric field intensity, area of the square and $\theta $ in the above formula, we get
$ \Rightarrow \Phi = 3 \times {10^3} \times 0.04 \times {\text{cos(0)}}^\circ $
$ \Rightarrow \Phi = 0.12 \times {10^3} \times 1$
On further calculation, we get
$ \Rightarrow \Phi = 120{\text{N}}{{\text{m}}^2}{\text{/C}}$
Therefore, The net flux through the cube is $120{\text{N}}{{\text{m}}^2}{\text{/C}}.$
Note: While doing the calculation, all the quantities should be in the same unit. The given value of the side of the cube is in centimetres, so convert it into meters before calculating the area of the square.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
IIT JEE Main Maths 2025: Syllabus, Important Chapters, Weightage
Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses
Difference Between Distance and Displacement: JEE Main 2024
Difference Between CNG and LPG: JEE Main 2024
Difference between soap and detergent
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line