Define coefficient of thermal conductivity of glass \[2.2 \times {10^{ - 3}}cals/cm/kg\].Calculate the rate of loss of heat through a glass window of area \[1000c{m^2}\] and thickness \[0.4cm\] when temperature inside is \[{37^ \circ }C\] and outside is\[ - {5^ \circ }C\].
Answer
Verified
122.4k+ views
Hint The heat flow rate of material with area A and thickness w depends on the thermal conductivity of the material. In our statement , Heat flows from the higher temperature to the lower temperature. Use \[\dfrac{{\Delta Q}}{{\Delta t}}\] to find the rate of heat loss.
Complete Step By Step Solution
Coefficient of thermal conductivity is defined as the parameter of the material whose rate at which heat is transferred via conduction through the whole cross sectional area of the area. The coefficient of thermal conductivity is given by the alphabet K.
In our given question, it is given that there’s a glass material subjected to a heat of \[{37^ \circ }C\] on the inside and exposed to a temperature of \[ - {5^ \circ }C\] on the outside. The area and the change in thickness is given and asked on the rate of heat loss. Rate of change of heat can be calculated by using the formula ,
\[\dfrac{{\Delta Q}}{{\Delta t}} = \dfrac{{KA\Delta T}}{{\Delta w}}\]
Where, \[K\]is coefficient of thermal conductivity
\[A\]is the cross-sectional area of the material
\[\Delta w\]is the change in width of the material
\[\Delta T\]is the change in temperature.
In our question two temperatures \[{T_1}\]and \[{T_2}\]are given, where \[{T_1}\] is temperature inside the glass and \[{T_2}\]is temperature outside the glass.
\[{T_1} = 273 + 37 = 310K\]
\[{T_2} = 273 - 5 = 268K\]
Substituting the values on the above mentioned formula we get,
\[ \Rightarrow \dfrac{{\Delta Q}}{{\Delta t}} = \dfrac{{2.2 \times {{10}^{ - 3}} \times 1000 \times (310 - 268)}}{{0.4}}\]
\[ \Rightarrow \dfrac{{\Delta Q}}{{\Delta t}} = \dfrac{{2.2 \times {{10}^{ - 3}} \times 1000 \times (42)}}{{0.4}}\]
\[ \therefore \dfrac{{\Delta Q}}{{\Delta t}} = 231cal/s\]
Therefore, \[231cal/s\]of heat is lost during the following process in a glass material.
Note Rate of heat transfer is defined as the amount of heat that is transferred from one end to another along its cross sectional area per unit time. It is generally calculated in watts. Rate of heat loss is generally calculated by rate of change of heat since there is some loss from initial to final value.
Complete Step By Step Solution
Coefficient of thermal conductivity is defined as the parameter of the material whose rate at which heat is transferred via conduction through the whole cross sectional area of the area. The coefficient of thermal conductivity is given by the alphabet K.
In our given question, it is given that there’s a glass material subjected to a heat of \[{37^ \circ }C\] on the inside and exposed to a temperature of \[ - {5^ \circ }C\] on the outside. The area and the change in thickness is given and asked on the rate of heat loss. Rate of change of heat can be calculated by using the formula ,
\[\dfrac{{\Delta Q}}{{\Delta t}} = \dfrac{{KA\Delta T}}{{\Delta w}}\]
Where, \[K\]is coefficient of thermal conductivity
\[A\]is the cross-sectional area of the material
\[\Delta w\]is the change in width of the material
\[\Delta T\]is the change in temperature.
In our question two temperatures \[{T_1}\]and \[{T_2}\]are given, where \[{T_1}\] is temperature inside the glass and \[{T_2}\]is temperature outside the glass.
\[{T_1} = 273 + 37 = 310K\]
\[{T_2} = 273 - 5 = 268K\]
Substituting the values on the above mentioned formula we get,
\[ \Rightarrow \dfrac{{\Delta Q}}{{\Delta t}} = \dfrac{{2.2 \times {{10}^{ - 3}} \times 1000 \times (310 - 268)}}{{0.4}}\]
\[ \Rightarrow \dfrac{{\Delta Q}}{{\Delta t}} = \dfrac{{2.2 \times {{10}^{ - 3}} \times 1000 \times (42)}}{{0.4}}\]
\[ \therefore \dfrac{{\Delta Q}}{{\Delta t}} = 231cal/s\]
Therefore, \[231cal/s\]of heat is lost during the following process in a glass material.
Note Rate of heat transfer is defined as the amount of heat that is transferred from one end to another along its cross sectional area per unit time. It is generally calculated in watts. Rate of heat loss is generally calculated by rate of change of heat since there is some loss from initial to final value.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
Electric field due to uniformly charged sphere class 12 physics JEE_Main