
Define second’s pendulum. Hence calculate the length of second’s pendulum.
Answer
147k+ views
Hint: Second’s pendulum takes one second to move from its mean position to one of its extreme position and use the expression of the time period of a simple pendulum.
Complete answer:
A second’s pendulum is a type of a simple pendulum whose time period of vibration is two seconds, that is it takes one second to move from a mean position to its extreme position and one second to move to another extreme point.
We can also define as the bob of the second’s pendulum takes exactly one second while oscillating through the mean position.
Let us consider a bob of mass $m$ is suspended by a weightless, inflexible and inelastic string of length $l$ from a rigid support, and then the expression for the time period of the simple pendulum is,
$T = 2\pi \sqrt {\dfrac{l}{g}} $ ... (1)
Here, $g$ is the acceleration due to gravity and $l$ is the length of the pendulum.
We know that the time period of the vibration of the second's pendulum is $T = 2\;{\rm{s}}$.
Let us rewrite the equation (1),
$l = g{\left( {\dfrac{T}{{2\pi }}} \right)^2}$
Now we substitute the values $T$ as $2\;{\rm{s}}$ and $g$ as $9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}$ in the above expression, we get,
$
l = 9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}{\left( {\dfrac{{2\;{\rm{s}}}}{{2\pi }}} \right)^2}\\
= 0.993\;{\rm{m}}
$
or
$l = 99.3\;{\rm{cm}}$
Hence, the length of the second’s pendulum is 99.3 cm.
Additional information: The frequency of the second’s pendulum is equal to $\dfrac{1}{2}\;{\rm{Hz}}$.
Note: The assumptions we take while obtaining the expression of time period are:
1. Air resistance is negligible.
2. The bob of the pendulum swings in a perfect plane.
Complete answer:
A second’s pendulum is a type of a simple pendulum whose time period of vibration is two seconds, that is it takes one second to move from a mean position to its extreme position and one second to move to another extreme point.
We can also define as the bob of the second’s pendulum takes exactly one second while oscillating through the mean position.
Let us consider a bob of mass $m$ is suspended by a weightless, inflexible and inelastic string of length $l$ from a rigid support, and then the expression for the time period of the simple pendulum is,
$T = 2\pi \sqrt {\dfrac{l}{g}} $ ... (1)
Here, $g$ is the acceleration due to gravity and $l$ is the length of the pendulum.
We know that the time period of the vibration of the second's pendulum is $T = 2\;{\rm{s}}$.
Let us rewrite the equation (1),
$l = g{\left( {\dfrac{T}{{2\pi }}} \right)^2}$
Now we substitute the values $T$ as $2\;{\rm{s}}$ and $g$ as $9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}$ in the above expression, we get,
$
l = 9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}{\left( {\dfrac{{2\;{\rm{s}}}}{{2\pi }}} \right)^2}\\
= 0.993\;{\rm{m}}
$
or
$l = 99.3\;{\rm{cm}}$
Hence, the length of the second’s pendulum is 99.3 cm.
Additional information: The frequency of the second’s pendulum is equal to $\dfrac{1}{2}\;{\rm{Hz}}$.
Note: The assumptions we take while obtaining the expression of time period are:
1. Air resistance is negligible.
2. The bob of the pendulum swings in a perfect plane.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
