
What is the degeneracy of the level of hydrogen atom that has energy$(\dfrac{-{{R}_{H}}}{9})$?
(A) 16
(B) 9
(C) 4
(D) 1
Answer
216k+ views
Hint:Hydrogen atom is a uni-electronic system. It contains only one electron and one proton. The repulsive forces due to electrons are absent in hydrogen atoms. Degeneracy of level means that the orbitals are of equal energy in a particular sub-shell.
Complete step by step solution:
Let’s see the answer to the given question:
We know that the energy is inversely proportional to the square of the level of the shell in which the electron is present.
That is, $E\propto -\dfrac{1}{{{n}^{2}}}$
$\Rightarrow \,\,E=-\dfrac{{{R}_{H}}}{{{n}^{2}}}$…..equation 1
Now, it is given in the question that:
$E=-\dfrac{{{R}_{H}}}{9}$
$E=-\dfrac{{{R}_{H}}}{{{3}^{2}}}$…..equation 2
On comparing equation 1 and equation 2
We get, n=3
Therefore, the electron in in the third level or shell of the hydrogen atom
Now, we know that the azimuthal quantum number ‘l’ gives the number of subshells and the magnetic quantum number ‘m’ gives the number of orbitals present in a shell.
Now, for n=3
l = 0 and m = 0
l = 1 and m = +1, 0, -1
l = 2 and m = -2, -1, 0, +1, +2
So, the total number of degenerate orbitals = 1+3+5 = 9
Hence, the answer of the given question is option (B).
Note: Degeneracy of orbitals means that the orbitals are of equal energy. Such orbitals are called degenerate orbitals. In hydrogen the level of energy degeneracy is as follows:
1s, 2s = 2p, 3s = 3p = 3d, 4s = 4p = 4d = 4f,…
Complete step by step solution:
Let’s see the answer to the given question:
We know that the energy is inversely proportional to the square of the level of the shell in which the electron is present.
That is, $E\propto -\dfrac{1}{{{n}^{2}}}$
$\Rightarrow \,\,E=-\dfrac{{{R}_{H}}}{{{n}^{2}}}$…..equation 1
Now, it is given in the question that:
$E=-\dfrac{{{R}_{H}}}{9}$
$E=-\dfrac{{{R}_{H}}}{{{3}^{2}}}$…..equation 2
On comparing equation 1 and equation 2
We get, n=3
Therefore, the electron in in the third level or shell of the hydrogen atom
Now, we know that the azimuthal quantum number ‘l’ gives the number of subshells and the magnetic quantum number ‘m’ gives the number of orbitals present in a shell.
Now, for n=3
l = 0 and m = 0
l = 1 and m = +1, 0, -1
l = 2 and m = -2, -1, 0, +1, +2
So, the total number of degenerate orbitals = 1+3+5 = 9
Hence, the answer of the given question is option (B).
Note: Degeneracy of orbitals means that the orbitals are of equal energy. Such orbitals are called degenerate orbitals. In hydrogen the level of energy degeneracy is as follows:
1s, 2s = 2p, 3s = 3p = 3d, 4s = 4p = 4d = 4f,…
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

