Derive an expression for work done by the gas in an Isothermal process.
Answer
Verified
412.3k+ views
Hint: In an isothermal process, the temperature remains constant. When work is done, the volume expands thereby reducing the pressure. It is a thermodynamic process. In this process, the transfer of heat to the surroundings takes place to make the temperature constant.
Complete step by step solution:
Let us consider 1 mole of gas is enclosed in an isothermal container. Let ${P_1},$${V_1}$ and T be the initial pressure, initial volume, and temperature. As work is done, let the gas expand to ${P_2},$${V_2}$ where ${P_2}$ is the reduced pressure and ${V_2}$ is the expanded volume.
Since the process is an Isothermal Process, the temperature remains constant. We know that work done is given by,
$W = \int {dW} $
$ \Rightarrow W = \int_{{V_1}}^{{V_2}} {PdV} \_\_\_\_\_\_\_\_\left( 1 \right)$
We have the relation $PV = nRT$
$ \Rightarrow PV = RT$ $\left( {\because n = 1mole} \right)$ and R is the ideal gas constant.
$ \Rightarrow P = \dfrac{{RT}}{V}$
Substituting the value of P in equation 1, we get
$ \Rightarrow W = RT\int_{{V_1}}^{{V_2}} {\dfrac{{dV}}{V}} $
$ \Rightarrow W = RT\left[ {\ln V} \right]_{{V_1}}^{{V_2}}$
$ \Rightarrow W = RT\left[ {\ln {V_2} - \ln {V_1}} \right]$
\[ \Rightarrow W = RT\ln \dfrac{{{V_2}}}{{{V_1}}}\]
\[\therefore W = 2.303RT{\log _{10}}\dfrac{{{V_2}}}{{{V_1}}}\]
We know that for constant temperature,
\[\dfrac{{{P_1}}}{{{P_2}}} = \dfrac{{{V_2}}}{{{V_1}}}\]
Thus, \[W = 2.303RT{\log _{10}}\dfrac{{{P_1}}}{{{P_2}}}\]
Thus, work done by the gas in an isothermal process is given by the expression, \[W = 2.303RT{\log _{10}}\dfrac{{{P_1}}}{{{P_2}}}\].
Note: 1. We can say that the work is positive when the force and the displacement are in the same direction and work is negative when the force and the displacement are opposite in direction. When the force and the displacement are perpendicular to each other, then the work done is zero or zero work.
2. During the isothermal process, both pressure and volume changes. Some heat engines like the Carnot Cycle are carried out by the isothermal process. Also, this process is of special interest to the ideal gases.
3. In the adiabatic process, the system does not exchange any heat with the surroundings, which is a contrast to the isothermal process.
Complete step by step solution:
Let us consider 1 mole of gas is enclosed in an isothermal container. Let ${P_1},$${V_1}$ and T be the initial pressure, initial volume, and temperature. As work is done, let the gas expand to ${P_2},$${V_2}$ where ${P_2}$ is the reduced pressure and ${V_2}$ is the expanded volume.
Since the process is an Isothermal Process, the temperature remains constant. We know that work done is given by,
$W = \int {dW} $
$ \Rightarrow W = \int_{{V_1}}^{{V_2}} {PdV} \_\_\_\_\_\_\_\_\left( 1 \right)$
We have the relation $PV = nRT$
$ \Rightarrow PV = RT$ $\left( {\because n = 1mole} \right)$ and R is the ideal gas constant.
$ \Rightarrow P = \dfrac{{RT}}{V}$
Substituting the value of P in equation 1, we get
$ \Rightarrow W = RT\int_{{V_1}}^{{V_2}} {\dfrac{{dV}}{V}} $
$ \Rightarrow W = RT\left[ {\ln V} \right]_{{V_1}}^{{V_2}}$
$ \Rightarrow W = RT\left[ {\ln {V_2} - \ln {V_1}} \right]$
\[ \Rightarrow W = RT\ln \dfrac{{{V_2}}}{{{V_1}}}\]
\[\therefore W = 2.303RT{\log _{10}}\dfrac{{{V_2}}}{{{V_1}}}\]
We know that for constant temperature,
\[\dfrac{{{P_1}}}{{{P_2}}} = \dfrac{{{V_2}}}{{{V_1}}}\]
Thus, \[W = 2.303RT{\log _{10}}\dfrac{{{P_1}}}{{{P_2}}}\]
Thus, work done by the gas in an isothermal process is given by the expression, \[W = 2.303RT{\log _{10}}\dfrac{{{P_1}}}{{{P_2}}}\].
Note: 1. We can say that the work is positive when the force and the displacement are in the same direction and work is negative when the force and the displacement are opposite in direction. When the force and the displacement are perpendicular to each other, then the work done is zero or zero work.
2. During the isothermal process, both pressure and volume changes. Some heat engines like the Carnot Cycle are carried out by the isothermal process. Also, this process is of special interest to the ideal gases.
3. In the adiabatic process, the system does not exchange any heat with the surroundings, which is a contrast to the isothermal process.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main
At which height is gravity zero class 11 physics JEE_Main
A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN
A wave is travelling along a string At an instant the class 11 physics JEE_Main
The length of a conductor is halved its conductivity class 11 physics JEE_Main
The x t graph of a particle undergoing simple harmonic class 11 physics JEE_MAIN
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
JEE Main Chemistry Exam Pattern 2025
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
Find the current in wire AB class 11 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)